Remove Battery Remove Carbon Remove Li-ion Remove Polymer
article thumbnail

New class of coordination polymers for high-performance Li-, Na- and K-ion storage

Green Car Congress

Researchers at the Université catholique de Louvain in Belgium have designed and synthesized a new class of electrically conducting anionic coordination polymers for all practically relevant alkali-cation storage. V for Li-, Na- and K-ion batteries. V in lithium-, sodium-, or potassium-based cells. Wang et al.

Li-ion 273
article thumbnail

Researchers show that inherent lithium ions in bioderived borate polymer enhance extreme fast charging capability in graphite anodes

Green Car Congress

In order to enable fast-charging ability in batteries, researchers have attempted to enhance the mass transfer of electrolytes and charge transfer in electrodes, with extensive research carried out on the former compared to the latter. Generally, when charging surpasses rate of intercalation, Li + plating occurs on graphite electrodes.

article thumbnail

Sulfur-carbon nanofiber composite for solid-state Li-sulfur batteries

Green Car Congress

Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Copyright Toyohashi University Of Technology. —Phuc et al.

Carbon 243
article thumbnail

Li-ion sulfur polymer battery shows high energy density as well as safety

Green Car Congress

A team from the University of Rome Sapienza has developed a rechargeable lithium-ion polymer battery based on the combination of a high capacity sulfur-carbon cathode, nanostructured Li x Sn-C anode and polysulfide-added PEO-based gel membrane. Moreover, the addition of a dissolved polysulfide (i.e.

Li-ion 150
article thumbnail

New multifunctional polymer binder achieves theoretical capacity of LiFePO4 Li-ion batteries without additives

Green Car Congress

Researchers led by a team from Griffith University in Australia have developed a multifunctional polymer binder that not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium-ion diffusion coefficient in a LiFePO 4 (LFP) electrode during the operation of the batteries.

Li-ion 150
article thumbnail

Polymer-graphene nanocomposites as high-rate “green” electrodes for Li-ion batteries

Green Car Congress

A team of researchers from the US and China have developed novel polymer?graphene graphene nanocomposites as high-rate cathode materials for rechargeable lithium batteries. Credit: ACS, Song et al. Click to enlarge. A paper on their work appears in the ACS journal Nano Letters. —Song et al.

Li-ion 239
article thumbnail

Self-healing polymer wrapper enables longer cycle life in silicon anodes for Li-ion batteries

Green Car Congress

Top: The stress of repeated swelling and shrinking shatters a conventional silicon electrode and its polymer binding. Bottom: An electrode coated with stretchy, self-healing polymer remains intact. (C. 1 for Li 15 Si 4 at room temperature)—almost ten times that of commercialized graphite anodes. Wang et al.,

Li-ion 230