This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers in Korea have developed three-dimensional monolithic corrugated graphene on nickel foam electrode as a Li metal storage framework in carbonate electrolytes. Therefore, hybrid engineering to prevent dendritic Li growth and increase the coulombic efficiency in highly reactive electrolytes is essential. 2018.12.075.
The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al.
V in lithium-metal batteries (LMBs). The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.
An international team of researchers has developed a new strategy for dendrite-free lithium-metal batteries based on the use of interlayer and intralayer atomic channels in graphite formed by pre-tunnelling the graphite layers. The obtained atomic channels enable the free and fast diffusion of lithium with enhanced kinetics. atomic channels.
Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 (Li 1.2 136 Wh kg ?1
Researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have developed an innovative electrolyte additive that enables a high-energy-density Li-ion battery to retain more than 80% of its initial capacity even after hundreds of cycles. O 2 cathodes. O 2 cathodes. capacity retention after 400 cycles at 1?C
Researchers at Pacific Northwest National Laboratory (PNNL) have used a novel Ni-based metal organic framework (Ni-MOF) significantly to improve the performance of Li-sulfur batteries by immobilizing polysulfides within the cathode structure through physical and chemical interactions at molecular level. Li-S anode work.
A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. Electrochemical performance of Li||NMC811 half-cells using different electrolytes. (a)
of Li deposition and stripping, along with an anodic stability of >5.5 of Li deposition and stripping, along with an anodic stability of >5.5 Pairing a Li-metal anode in this electrolyte with and LiNi 0.6 When coupled with a high Ni-content cathode such as LiNi 0.6 O 2 (NMC622), a 500 Wh/kg battery becomes possible.
Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 O 2 (NCM) and Li[Ni 0.8
Researchers from the Samsung Advanced Institute of Technology (SAIT) and the Samsung R&D Institute Japan (SRJ) have developed a new high-performance all-solid-state lithium metal battery that uses, for the first time, a silver-carbon (Ag-C) composite layer as the anode with no excess Li. 1 ) and high areal capacity (>6.8?mAh?cm
Roskill forecasts that Li-ion battery demand will increase more than ten-fold by 2029, reaching in excess of 1,800GWh capacity. The pipeline capacity of battery gigafactories is reported by Roskill to exceed 2,000GWh in 2029, at more than 145 facilities globally.
A team from the Universidad Politécnica de Valencia and the Universidad de Valencia has synthesized a hybrid graphene-nickel/manganese mixed oxide that, when used as an anode material for Li-ion batteries, shows a maximum capacity of 1030 mAhg -1 during the first discharge; capacity values higher than 400 mAhg -1 were still achieved after 10 cycles.
The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.
The US Department of Energy (DOE) has six recently launched applied battery research (ABR) projects as part of its Vehicle Technologies portfolio. TIAX proposes that using a blended Si/hard carbon anode will allow the design of cells capable of delivering high energy during EV operation and high power during HEV mode of the battery.
The new battery features high energy content and high rate capability. Korea) are developing a new advanced lithium-ion battery featuring a high capacity Sn-C nanostructured anode and a high rate, high-voltage Li[Ni 0.45 While Lithium metal alloys (Li-M, M = Sn, Si, Sb, etc.) Full battery. Click to enlarge.
RECLAIM: Electrochemical Lithium and Nickel Extraction with Concurrent Carbon Dioxide Mineralization ($2,999,997). Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals. Olivine is a CO 2 -reactive waste product that can be returned as tailings after capture carbon from the air. Harvard University.
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e.,
Bar chart showing the specific activities of Pt/C, Pt poly-crystal electrode, IL-encapsulated Pt 3 Ni nanoframes/C, PtNi-Meso-TF, and Pt 3 Ni(111)-Skin electrode, and the corresponding improvement factors vs. Pt/C. Currently, the best electrocatalyst for both reactions consists of platinum nanoparticles dispersed on carbon.
A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. However, the electrochemical inertness of bulk sulfur in the cathode of Li?S
Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6
Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).
This includes research on appropriate anodes, cathodes, and electrolytes for magnesium (Mg)-, sodium (Na)-, and lithium (Li)-based batteries and novel transition metal oxide- and nitride-based supercapacitor electrode materials. High-energy density magnesium batteries for smart electrical grids. Earlier post.)
Materials used in batteries for EVs and stationary storage are now considered to be critical. While cobalt (Co) was found to be critical in this and previous reports, lithium (Li) becomes critical in the medium term due to its broader use in various battery chemistries and the rampant growth of the EV industry.
Researchers in China have developed a high-voltage-resistant (HV electrolyte) for use in ultrahigh-voltage lithium metal batteries. As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ?m) ion batteries (LIBs), although it is challenging.
As cycle life still needs to be improved for automotive applications (USABC long-term goals for EV batteries call for 1,000 cycles at 80% DOD and 10 years, earlier post ), the advanced batteries with their attractive energy densities may emerge earlier in critical portable power applications. Click to enlarge. Earlier post.)
A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. V vs Li/Li + ) with comparable capacities to the dominant graphite anodes.
Schematic illustration of a Li-O 2 cell employing a mesoporous catalytic polymer membrane. A modified Li-O 2 battery with a catalytic membrane showed a stable cyclability for 60 cycles with a capacity of 1000 mAh/g and a reduced degree of polarization (?0.3 Credit: ACS, RYu et al. Click to enlarge.
Conventional electrolytes for Li-ion batteries contain ethylene carbonate (EC) and other additives. However, the cycling performance of Li-ion cells using these carbonate-based electrolytes has been poor at higher voltages (≥4.4 A paper on their work is published the Journal of Power Sources.
A team from Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) in Germany reports in a paper in the Journal of Power Sources that the interaction of high-rate and low-temperature cycling increases the safety hazard for Li-ion batteries. In that that study, they cycled the cells at temperatures ranging from -20 °C to +70 ?
Khalil Amine, Senior Scientist and Manager of Argonne National Laboratory’s advanced Lithium Battery Program, provided an update on some of the activities at Argonne on advanced high-power systems for hybrid-electric (HEV) and high-energy systems for plug-in hybrid electric vehicles (PHEV). XRD of new Argonne nano-Li 4 Ti 5 O 12 spinel.
The company expects that the new resource will provide for increased feedstock grade to the proposed lithium carbonate process plant. Category Tonnes (thousands) Lithium (%) Lithium oxide (%) LCE (Licarbonate equivalent) (tonnes). Principal, Reserva International LLC, an independent Qualified Person as defined by NI 43-101.
Researchers from Nanyang Technical University (NTU) in Singapore have shown high-capacity, high-rate, and durable lithium- and sodium-ion battery (LIB and NIB) performance using single-crystalline long-range-ordered bilayered VO 2 nanoarray electrodes. This is important in boosting the high-rate performance in both Li and Na ion storage.
Researchers at the University of Maryland (UMD), the US Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have developed a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Li metal offers one of the highest specific capacities (3,860 mAh g ?1
In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.
Designer of the first handheld analyzer that performs general alloy analysis and carbon in steels and stainless, SciAps remains the market leader with thousands of these devices in use daily for alloy and weld chemistry validation in the energy sector. SciAps recognizes that no single tool solves every problem. Don’t need REE performance?
After carbon coating, the prepared LiMnPO 4 cathode demonstrated a flat potential at 4.1 V versus Li with a specific capacity reaching as high as 168 mAh/g under a galvanostatic charging/discharging mode, along with an excellent cyclability. V) vs Li/Li+.7 Tags: Batteries. 7 —Choi et al. Choi et al. Choi et al.
A team at Argonne National Laboratory has used spatially resolved energy dispersive X-ray diffraction to obtain a “movie” of lithiation and delithiation in different sections of a Li-ion battery cell and to quantify lithium gradients that develop in a porous graphite electrode during cycling at a 1C rate (full discharge in 1 hour).
Batteries for electrified vehicles require much longer calendar and cycle lifetimes, as well as improved high temperature tolerance, than their portable consumer electronics counterparts. Researchers at Dalhousie University (Canada) led by Dr. Jeff Dahn now report that Li[Ni 1/3 Mn 1/3 Co 1/3 ]O 2 (NMC111)/graphite and Li[Ni 0.42
An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of “lithium-rich” cathode materials by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material’s surface. —Qiu et al.
Tesla Motor’s Co-founder and Chief Technology Officer JB Straubel signed a 5-year research agreement with Dalhousie University’s Jeff Dahn, Li-ion battery researcher with the Faculty of Science, and his group of students, postdoctoral researchers and technical staff. combinatorial solutions handling robot for respirator carbons.
Lithium-ion automotive battery producer EnerDel and Nissan Motor Co. are teaming up to co-fund research at Argonne National Laboratory (ANL) on a new electrolyte for lithium-ion batteries. Both EnerDel and AESC, Nissan’s Li-ion JV, work with that chemistry. Stability over the 10-year battery life. O 2 material.
E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e.,
As has been noted many times, silicon is a promising candidate for electrodes in lithium ion batteries due to its large theoretical energy density of about 4,200 mAhg -1 —10x higher than graphite (372 mAhg -1 )—and relatively low working potential (~0.5 V vs Li/Li + ). In their study, Song et al. Song et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content