article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity.

article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Large-scale energy storage systems are needed to deal with intermittent electricity production of solar and wind. —the precursor of Li 1.1

Sodium 292
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The high energy storage has stimulated a worldwide study of Li-air batteries. V was developed.

Sodium 218
article thumbnail

Pike Forecasts Grid Stationary Energy Storage Market to Reach $35B by 2020; Significant Opportunity for CAES, Li-ion and Flow Batteries

Green Car Congress

Demand is being driven by several key trends including the proliferation of renewable energy from variable sources such as wind and solar, the expansion of utility smart grid initiatives, and the introduction of plug-in hybrid and electric vehicles, Pike says. Source: Pike Research. Click to enlarge.

Li-ion 199
article thumbnail

Hydro-Québec and Technifin form partnership to license lithium titanate spinel oxide (LTO) technologies for Li-ion battery applications

Green Car Congress

Hydro-Québec (Canada) and Technifin (South Africa) have entered into an intellectual property collaboration agreement relating to the licensing of their respective intellectual property (IP) in lithium titanate spinel oxide (LTO) technologies, notably for lithium-ion battery applications. It operates at 1.5

article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150