Remove Energy Remove Li-ion Remove Sodium Remove Wind
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. mAh cm −2 , a discharge duration of 28.2 —Weller et al.

article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. —Lee et al.

Sodium 186
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. The larger Na + ion as compared to the Li + ion (1.02

Sodium 292
article thumbnail

Pike Forecasts Grid Stationary Energy Storage Market to Reach $35B by 2020; Significant Opportunity for CAES, Li-ion and Flow Batteries

Green Car Congress

According to a new report from Pike Research, worldwide installed revenues for stationary energy storage systems for the electricity grid will grow at a strong pace in the coming decade, increasing from $1.5 Worldwide installed revenue opportunity by energy storage on the grid (ESG) technology, 2010-2020. billion in 2010 to $35.3

Li-ion 199
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. In theory, the specific energy of a lithium-oxygen (air) battery is 5200 W h kg -1.

Sodium 218
article thumbnail

Hydro-Québec and Technifin form partnership to license lithium titanate spinel oxide (LTO) technologies for Li-ion battery applications

Green Car Congress

Hydro-Québec (Canada) and Technifin (South Africa) have entered into an intellectual property collaboration agreement relating to the licensing of their respective intellectual property (IP) in lithium titanate spinel oxide (LTO) technologies, notably for lithium-ion battery applications. It operates at 1.5

article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.