Remove Energy Remove Li-ion Remove Lithium Ion Remove Universal
article thumbnail

Researchers develop soft co-crystalline solid electrolyte for lithium-ion batteries

Green Car Congress

Researchers led by a team at Temple University have developed a soft solid electrolyte—(Adpn) 2 LiPF 6 (Adpn, adiponitrile)—that exhibits high thermal and electrochemical stability and good ionic conductivity, overcoming several limitations of conventional organic and ceramic materials. Prakash et al. Resources Prakash, P.,

article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

the key to addressing the low-temperature capacity loss lies in adjusting the surface electron configurations of the carbon anode to reinforce the coordinate interaction between the solvated Li + and adsorption sites for Li + desolvation and reduce the activation energy of the charge-transfer process. . …

Li-ion 418
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. graduate Wangda Li. energy lithium?ion

article thumbnail

Tohoku, UCLA team advance 4V-class metal-free organic Lithium-ion batteries; croconic acid cathode

Green Car Congress

A joint research team from Tohoku University and the University of California, Los Angeles (UCLA) has made a significant advance towards high-voltage metal-free lithium-ion batteries by using a small organic molecule: croconic acid. Increasing organic batteries’ voltage could lead to higher energy-density batteries.

article thumbnail

UC Irvine team creates long-lasting, cobalt-free, low-nickel lithium-ion batteries

Green Car Congress

In a discovery that could reduce or even eliminate the use of cobalt—which is often mined using child labor—in the batteries that power electric cars and other products, scientists at the University of California, Irvine (UCI) have developed a long-lasting alternative made with nickel. Nat Energy. The LiNi 0.5 mA cm −2 ).

article thumbnail

Sionic Energy, formerly NOHMs, launches to commercialize next-generation silicon-anode Li-ion battery cells

Green Car Congress

Sionic’s silicon-anode battery cell designs incorporate the company’s complete technology innovations that deliver up to 50% greater energy density, 30% lower cost, and increased safety, and can be integrated into cylindrical, pouch, or prismatic cell formats in existing cell production supply chains and infrastructure. —Ed Williams.

Li-ion 221
article thumbnail

Argonne researchers identify another reason why fast-charging degrades the performance of Li-ion batteries

Green Car Congress

A new study by researchers from Argonne National Laboratory and the University of Illinois Urbana-Champaign seeking to identify the reasons that cause the performance of fast-charged lithium-ion batteries to degrade in EVs has found interesting chemical behavior of the anode as the battery is charged and discharged.

Li-ion 321