Remove Electrical Remove Industry Remove Ni-Li Remove Universal
article thumbnail

Researchers show clean solid–electrolyte/electrode interfaces double capacity of solid-state Li batteries

Green Car Congress

Scientists at Tokyo Institute of Technology (Tokyo Tech), Tohoku University, National Institute of Advanced Industrial Science and Technology, and Nippon Institute of Technology, have demonstrated by experiment that a clean electrolyte/electrode interface is key to realizing high-capacity solid-state lithium batteries (SSLBs).

Ni-Li 243
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. graduate Wangda Li. —Li et al.

article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals.

Supplies 345
article thumbnail

Stanford researchers develop new electrolysis system to split seawater into hydrogen and oxygen

Green Car Congress

Hongjie Dai and his research lab at Stanford University have developed a prototype that can generate hydrogen fuel from seawater. Water splitting with electricity—electrolysis—is a simple and old idea: a power source connects to two electrodes placed in water. Image credit: Courtesy of H. Dai, Yun Kuang, Michael Kenney).

Hydrogen 249
article thumbnail

Sulfur nanodots on nickel foam as high-performance Li-S cathode materials; carbon- and binder-free

Green Car Congress

A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. However, the electrochemical inertness of bulk sulfur in the cathode of Li?S

Ni-Li 150
article thumbnail

UCSD researchers improve method to recycle and renew used cathodes from Li-ion batteries via eutectic molten salts

Green Car Congress

Researchers at the University of California San Diego have improved their recycling process that regenerates degraded cathodes from spent lithium-ion batteries. Co 0.2 ), a popular cathode containing nickel, manganese and cobalt, which is used in many of today’s electric vehicles. Pressure Relithiation of Degraded Li x Ni 0.5

article thumbnail

Dahn Lab at Dalhousie signs exclusive 5-year research partnership with Tesla, beginning in 2016

Green Car Congress

Tesla Motor’s Co-founder and Chief Technology Officer JB Straubel signed a 5-year research agreement with Dalhousie University’s Jeff Dahn, Li-ion battery researcher with the Faculty of Science, and his group of students, postdoctoral researchers and technical staff. New Li-ion electrode materials. Theoretical/modeling projects.

Li-ion 150