Remove Carbon Remove Energy Remove Energy Storage Remove Lithium Air
article thumbnail

Report: VW Group to decide how to proceed with Quantumscape solid state energy storage by July

Green Car Congress

Bloomberg reports that the Volkswagen Group will decide by July how to proceed with solid state energy storage technology under development by Quantumscape ( earlier post) , citing Prof. The all solid-state system would enable high energy density, high power density, and reversibility of a lithium-air battery, according to the claims.

article thumbnail

IBM Almaden Lab Exploring Lithium-Air Batteries for Next-Generation Energy Storage

Green Car Congress

General schematic of a lithium-air battery. Leveraging expertise in materials science, nanotechnology, green chemistry and supercomputing, scientists at IBM Research’s Almaden lab in San Jose, California, are undertaking a multi-year research initiative around a grid-scale, efficient, affordable electrical energy storage network.

article thumbnail

Cornell study examines trade-off between critical metals requirement and transportation decarbonization

Green Car Congress

Higher EV penetration reduces GHG emissions from fuel use regardless of the transportation energy transition, while those from fuel production are more sensitive to energy-sector decarbonization and could reach nearly “net zero” by 2040. —Zhang et al. (a) a) Annual demand and recycling potential with or without a second use.

article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

Gravimetric Ragone plot comparing energy and power characteristics of CNF electrodes based on the pristine and discharged electrode weight with that of LiCoO 2. This translates to an energy enhancement ~4 times greater than the state-of-the-art lithium intercalation compounds such as LiCoO 2 (~600 W h kg electrode -1 , the researchers said.

MIT 268
article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

air (Li-O 2 ) battery represents a conceptually attractive energy storage device for electric vehicle applications due to its high theoretical energy storage capacity ( earlier post ); however, among the obstacles to commercialization is a lack of fundamental understanding of the reactions involved.

article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

V), which renders the system with a low round-trip energy efficiency around 60%. Recently, researchers have also found out the instability of electrolyte and carbon electrode under the high charging potential (>3.5 O 2 battery containing a potassium metal foil, a glassy fiber separator and a porous carbon electrode, with 0.5

article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281