Remove Battery Remove Cost Of Remove Electrical Remove Ni-Li
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. graduate Wangda Li. graduate Wangda Li.

article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.

Li-ion 281
article thumbnail

Study finds resource constraints should not be a limiting factor for large-scale EV battery production

Green Car Congress

C) Extraction costs of the elements in the couples, calculated from the USGS prices of the elements. One critical concern for the scale-up of battery production—either with existing chemistries or with future potential material couples—is the availability of the elements used. only for grid-scale batteries?

Ni-Li 268
article thumbnail

AIST Develops New Cobalt-free, Mixed Oxide Cathode Material with Iron for Li-ion Batteries; Lower Cost with Good Performance

Green Car Congress

have developed two cobalt-free mixed metal oxide cathode materials for Li-ion batteries containing 20% iron: Li 1+x (Fe 0.2 Mn 0.4 ) 1-x O 2 and Li 1+x (Fe 0.2 Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST), in collaboration with Tanaka Chemical Corp., Mn 0.6 ) 1-x O 2.

Li-ion 186
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6

Recharge 220
article thumbnail

New A123 Systems LLC emerges

Green Car Congress

Li-ion battery maker A123 Systems LLC, a newly formed, wholly owned subsidiary of Wanxiang America Corporation, has acquired substantially all of the non-government business assets of bankrupt A123 Systems, Inc. —Pin Ni, president of Wanxiang America. Electric Grid. A123’s joint venture with Shanghai Automotive.

Lead Acid 310
article thumbnail

Update on Select Argonne Lab Activity with HEV and PHEV Li-ion Batteries

Green Car Congress

Khalil Amine, Senior Scientist and Manager of Argonne National Laboratory’s advanced Lithium Battery Program, provided an update on some of the activities at Argonne on advanced high-power systems for hybrid-electric (HEV) and high-energy systems for plug-in hybrid electric vehicles (PHEV). New titanate system for HEVs.

Li-ion 150