Remove Batteries Remove Grid Remove Recharge Remove Sodium
article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. —Jin et al.

Sodium 334
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

By Kamlesh & Raphae Every major automaker has announced plans to build Lithium-Ion battery gigafactories. The aim is to build batteries at a large scale to reduce prices. Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! Multiple auto makers are seeking a secure supply chain for battery materials.

Sodium 59
article thumbnail

New MIT metal-mesh membrane could solve longstanding problems with liquid metal displacement batteries; inexpensive grid power storage

Green Car Congress

A new metal mesh membrane developed by researchers at MIT could advance the use of the Na–NiCl 2 displacement battery, which has eluded widespread adoption owing to the fragility of the ?"-Al The results could make possible a whole family of inexpensive and durable materials practical for large-scale rechargeable batteries.

MIT 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. A typical Li-air battery discharges at 2.5-2.7

Sodium 218
article thumbnail

Navigant: 2016 advanced battery shipments through Q3 = 323M cells and $3.8B in sales

Green Car Congress

According to a new report from Navigant Research, the shipment volume of advanced batteries for the first three quarters of 2016 equates to more than 323.5 million individual battery cells, 16.1 The majority of the advanced batteries in 2016 have been manufactured in Asia Pacific and shipped around the world. billion in sales.

2016 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. A paper on their work is published in the Journal of the American Chemical Society. V) without failure. —Abouimrane et al. electrodes (Se?

Recharge 220