Remove Batteries Remove Carbon Remove Conversion Remove Ni-Li
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).

Li-ion 199
article thumbnail

Sulfur nanodots on nickel foam as high-performance Li-S cathode materials; carbon- and binder-free

Green Car Congress

A team at Nankai University in China has devised high-performance Li-sulfur battery cathode materials consisting of sulfur nanodots (2 nm average) directly electrodeposited on flexible nickel foam; the cathode materials incorporate no carbon or binder. However, the electrochemical inertness of bulk sulfur in the cathode of Li?S

Ni-Li 150
article thumbnail

GWU team demonstrates one-pot process for optimized synthesis of controlled CNTs from CO2; coupling cement and C2CNT

Green Car Congress

Stuart Licht ( earlier post ) have developed a new process that transforms CO 2 into a controlled selection of nanotubes (CNTs) via molten electrolysis; they call the process C2CNT (CO2 into carbon nanotubes). Molten carbonate electrosynthesized boron-doped CNTs exhibit high electrical conductivity. —Ren et al. Licht (2017).

CO2 150
article thumbnail

SciAps introducing family of handheld analyzers for in-field analysis of lithium and rare earth elements

Green Car Congress

Designer of the first handheld analyzer that performs general alloy analysis and carbon in steels and stainless, SciAps remains the market leader with thousands of these devices in use daily for alloy and weld chemistry validation in the energy sector. SciAps recognizes that no single tool solves every problem. Don’t need REE performance?

Ni-Li 243
article thumbnail

Researchers develop non-flammable fluorinated electrolyte for Li-metal anodes with aggressive cathode chemistries; toward a 500 Wh/kg goal

Green Car Congress

Researchers at the University of Maryland (UMD), the US Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have developed a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Li metal offers one of the highest specific capacities (3,860 mAh g ?1

Ni-Li 186
article thumbnail

DOE to award $30M to support production of rare earths and other critical minerals from coal-based resources

Green Car Congress

20%) than costs for producing these materials using currently available conventional separations and conversion technologies.

Coal 150
article thumbnail

Researchers boost performance of lithium-rich cathode material 30-40% by creating oxygen vacancies

Green Car Congress

An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of “lithium-rich” cathode materials by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material’s surface. —Qiu et al. Click to enlarge.

San Diego 170