article thumbnail

Renesas Electronics introduces 4th-generation Li-ion battery management IC

Green Car Congress

Renesas Electronics Corporation announced its fourth-generation lithium-ion (Li-ion) battery management IC that offers unmatched lifetime accuracy. Together, we designed and integrated a low-voltage Li-ion battery management system featuring ISL78714 ICs and RH850 microcontrollers in Mahindra Racing electric race cars.

Li-ion 199
article thumbnail

Researchers in Belgium develop new class of solid composite electrolytes for Li-ion batteries: Eutectogels

Green Car Congress

Researchers at Hasselt University in Belgium are proposing a new class of solid composite electrolytes (SCEs) for Li-ion batteries: deep eutectic solvent (DES)–silica composites. The DES-based gel electrolytes—to which the team refers as eutectogels (ETGs)—are characterized by high ionic conductivity (1.46

Li-ion 218
article thumbnail

Intersil introduces new 12-cell Li-ion pack monitor for HEV, PHEV and EV applications

Green Car Congress

Intersil Corporation, a leading provider of power management and precision analog solutions, announced the ISL78610 12-cell lithium-ion (Li-ion) battery pack monitor. The device also offers four external temperature inputs, and includes fault detection and diagnostics for all key internal functions.

Li-ion 150
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. Na is comparable to graphite for standard lithium ion batteries. The estimated sodium storage up to C 6.9

Sodium 493
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge. kWh kg -1 cell (1.0

Li-ion 255
article thumbnail

24M emerges from stealth mode with new semi-solid Li-ion cell; <$100/kWh by 2020

Green Car Congress

Stealth-mode battery start-up 24M has introduced its new semi-solid lithium-ion cell. Together, our inventions achieve what lithium-ion has yet to do—meet the ultra-low cost targets of the grid and transportation industries. By 2020 our battery costs will be less than $100 a kilowatt-hour (kWh).

Li-ion 150
article thumbnail

Ricardo and QinetiQ Demonstrate New Iron-Sulphide Li-ion Pack for HEVs

Green Car Congress

The aim of the project was to develop an alternative Li-ion cell chemistry that could be integrated within an HEV using a bespoke battery management system. QinetiQ has also been working on lithium-ion/iron sulphide cells for a number of years. Scattergood (2004) Lithium-ion/iron sulphide rechargeable batteries.

Li-ion 218