article thumbnail

MIT, Ford researchers find lightweight conventional vehicles could have lower lifecycle GHG impact than EVs depending upon location

Green Car Congress

Researchers at MIT and the Ford Motor Company have found that depending on the location, lightweight conventional vehicles could have a lower lifecycle greenhouse gas impact than electric vehicles, at least in the near term. Their paper is published in the ACS journal Environmental Science & Technology. —Wu et al.

MIT 236
article thumbnail

Researchers propose new aluminum–sulfur battery with molten-salt electrolyte; low-cost, rechargeable, fire-resistant, recyclable

Green Car Congress

An international team of researchers led by Quanguan Pang at Peking University and Donald Sadoway at MIT reports a bidirectional, rapidly charging aluminum–chalcogen battery operating with a molten-salt electrolyte composed of NaCl–KCl–AlCl 3. —Pang et al.

article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

The second round was focused specifically on three areas of technology representing new approaches for advanced microbial biofuels (electrofuels); much higher capacity and less expensive batteries for electric vehicles; and carbon capture. Electrofuels: Biofuels from Electricity. The grants will go to projects in 17 states.

Carbon 249
article thumbnail

PHEVLERs are the Zero CO2 Clean Green Machines of the Future

Green Car Congress

The Plug-in Hybrid Electric Vehicle with Long Electric Range (PHEVLER - pronounced “fevler”) is a new category emerging in the electric vehicle marketplace. PHEVLERs are defined as PHEVs with sufficient battery capacity for all electric driving of twice the average daily distance. [ and UC-Davis Emeritus and Bruce R.

Clean 150
article thumbnail

MIT Battery Breakthrough Could Revolutionize Electric Cars : Gas 2.0

Tony Karrer Delicious EVdriven

The breakthrough could revolutionize electric car battery technology and pave the way for ultra-fast charging electric vehicles in as little as two years. The discovery came when MIT researchers Byoungwoo Kang and Gerbrand Ceder found out how to get a common lithium compound to release and take up lithium ions in a matter of seconds.

MIT 45
article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

Researchers at the Skoltech Center for Electrochemical Energy Storage (CEES), a partnership between the MIT Materials Processing Center and Lomonosov Moscow State University, are focusing on the development of higher capacity batteries. Chiang, MIT colleague W. Rechargeable metal-air batteries.

MIT 150
article thumbnail

Behind the Wheel, Under the Hood of Rivian's R1T

Cars That Think

The world’s first-to-market electric pickup truck, it turns out, isn’t from Ford, General Motors, or a late-to-market Tesla Cybertruck. Scaringe—a bespectacled mechanical engineer with a PhD from MIT—a billionaire by the age of 38. Instead, it’s the Rivian R1T, from the California start-up that’s already made founder R.J.

F-150 102