Remove Energy Storage Remove Low Cost Remove Production Remove Sodium
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. h is achieved with an estimated raw active materials cost of $7.02 of peak charge capacity.

article thumbnail

Fraunhofer researchers develop new low-cost dry-film electrode production process

Green Car Congress

Researchers at the Fraunhofer Institute for Material and Beam Technology IWS in Dresden have developed a new battery cell production process that coats the electrodes of the energy storage cells with a dry film instead of liquid chemicals. This simplified process saves energy and eliminates toxic solvents.

Low Cost 339
article thumbnail

Faraday Institution to award up to £55M to five consortia for energy storage research

Green Car Congress

The new projects in four focus areas join the existing Faraday Institution research projects that collectively aim to deliver the organisation’s mission to accelerate breakthroughs in energy storage technologies to benefit the UK in the global race to electrification. Next generation sodium ion batteries–NEXGENNA.

article thumbnail

RAL proposes new efficient and low-cost process to crack ammonia for hydrogen using sodium amide; transportation applications

Green Car Congress

RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. Arguably, this focus may have diminished the consideration of reversibility, cost, and practicality of use of these materials. Click to enlarge.

Sodium 210
article thumbnail

Reliance buys Na-ion battery developer Faradion

Green Car Congress

Reliance New Energy Solar Ltd, a wholly owned subsidiary of Reliance Industries Ltd, will acquire 100% shareholding in sodium-ion battery developer Faradion Limited ( earlier post ) for an enterprise value of £100 million (US$135 million). Sodium is the sixth-most abundant element on the planet.

Sodium 199
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)

Sodium 150