Remove Charging Remove Energy Storage Remove Li-ion Remove Reference
article thumbnail

Ningbo researchers propose mixed-ion Li/Na batteries

Green Car Congress

Schematics of Li + /Na + mixed-ion battery. During charging (or discharging), the storage (or release) of Li + takes place at anode, and the release (or storage) of Na + occurs at cathode. However, a number of issues remain before SIBs could become commercially competitive with Li-ion batteries (LIBs).

Li-ion 170
article thumbnail

New sensor tech for commercial Lithium-ion batteries could support >5x faster charging without compromising safety

Green Car Congress

Researchers at WMG at the University of Warwick (UK) have developed a method to assess the maximum current for commercial 18650 Li-ion batteries, using novel instrumentation methods enabling in operando measurements. times higher than the manufacturer-stated maximum. times higher than the manufacturer-stated maximum.

article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? —Sun et al.

Sodium 493
article thumbnail

OSU smart membrane could enable new category of high-energy, high-power energy storage for EVs

Green Car Congress

A team at the Ohio State University has developed a membrane that regulates bi-directional ion transport across it as a function of its redox state and that could be used as a programmable smart membrane separator in future supercapacitors and redox flow batteries. plugin EVs to Tesla’s 85 kWh battery pack).

article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge. Zhao et al.

Li-ion 255
article thumbnail

MIT team develops data-driven safety envelope for lithium-ion batteries for EVs

Green Car Congress

Researchers at MIT, with a colleague from Tsinghua University, have developed a safety envelope for Li-ion batteries in electric vehicles by using a high accuracy finite element model of a pouch cell to produce more than 2,500 simulations and subsequently analyzing the data with Machine Learning (ML) algorithms. —Li et al.

article thumbnail

Fire risks associated with li-ion batteries & safety

Electric Vehicles India

Fire risks associated with li-ion batteries & safety. The demand for lithium-ion battery-powered road vehicles continues to increase around the world day by day. As the technological advances in energy storage systems, specifically those that are part of the lithium-ion family.

Li-ion 52