This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Key components, cell voltage, and cell capacity of Li-ion battery (a), Ni-MH battery (b), and the proposed Ni-Libattery (c). Credit: ACS, Li et al. The proposed Ni-Libattery offers both a high cell voltage (3.49 Click to enlarge. Earlier post.]. Earlier post.].
V in lithium-metal batteries (LMBs). The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.
Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.
Rechargeablebatteries store electricity in their electrode materials, while redox flow batteries use chemicals stored in tanks attached to the electrodes. Researchers have now developed a battery system based on a hybrid cell, which not only stores and provides electricity but also produces valuable chemicals in a flow system.
Joseph Parker, Jeffrey Long, and Debra Rolison from NRL’s Advanced Electrochemical Materials group are leading the effort to create an entire family of safer, water-based, zinc batteries. The long-standing limitation that has prevented implementing Zn in next-generation batterieslies in its poor rechargeability due to dendrite formation.
Researchers in South Korea report the synthesis of high capacity Mn-rich mixed oxide cathode materials for Li-ion batteries. Novel cathode active materials, Li[Li x (Ni 0.3 The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeablebatteries.
Simulated zone projection image based on LMNO crystal model with 20% Ni/Li disorder corresponding to blue rectangle. Simulated zone projection image based on LMNO crystal model with 10% Ni/Li disorder corresponding to white rectangle. For example, a layered composite based on lithium nickel manganese oxide Li 1.2
Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6
Out of several candidates that could replace Li in rechargeablebatteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance.
Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeablebattery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 Mn 0.15 ]O 2.
The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.
(a) SEM image and (b) cross-sectional images of Li[Ni 0.67 A team from Hanyang University (Korea), Iwate University (Japan) and Argonne National Laboratory in the US synthesized a novel Li[Ni 0.67 The discharge capacity of the concentration-gradient Li[Ni 0.67 and Li[(Ni 0.8 The Li[Ni 0.67
have developed two cobalt-free mixed metal oxide cathode materials for Li-ion batteries containing 20% iron: Li 1+x (Fe 0.2 Mn 0.4 ) 1-x O 2 and Li 1+x (Fe 0.2 Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST), in collaboration with Tanaka Chemical Corp., Mn 0.6 ) 1-x O 2.
Fast charging is seen as a solution for range and recharging time issues for EVs. Fast charging in cold or even cool temperatures brings the risk of lithium plating—the formation of metallic lithium that drastically reduces battery life and even results in safety hazards. C charge at 10 °C and C/1.5
University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Zinc-air batteries are powered by zinc metal and oxygen from the air. Zinc-air batteries are powered by zinc metal and oxygen from the air. Other two amorphous bimetallic, Ni 0.4
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e.,
Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57 However, O3-Li 0.7
Researchers in China have developed a high-voltage-resistant (HV electrolyte) for use in ultrahigh-voltage lithium metal batteries. As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ?m) ion batteries (LIBs), although it is challenging.
Gerbrand Ceder (now at UC Berkeley/Lawrence Berkeley Lab as of 1 July, formerly at MIT) have developed a new class of high capacity cation-disordered oxides—lithium-excess nickel titanium molybdenum oxides (Li-Ni-Ti-Mo, or LNTMO)—for Li-ion cathode materials which deliver capacities up to 250 mAh/g. —Lee et al.
SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. The results, say the researchers, suggest that the cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles. From Sun et al.
A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. V vs Li/Li + ) with comparable capacities to the dominant graphite anodes.
Researchers from the Korea Advanced Institute of Science and Technology (KAIST), with colleagues from the Korea Institute of Energy Research (KIER), Qatar University and major battery manufacturer LG Chem have developed a technique for the delicately controlled prelithiation of SiO x anodes for high-performance Li-ion batteries.
Nanoparticle nickel manganese cobalt oxide (NMC), an emerging material that is being rapidly incorporated into lithium-ion battery cathodes, has been shown to impair Shewanella oneidensis , a key soil bacterium, according to new research published in the ACS journal Chemistry of Materials. —Hang et al.
Materials technology group Umicore has acquired a set of product and process patents covering high-end Li-ion active cathode materials from FMC Corporation. This patented technology increases the performance and safety for Li-ion batteries using lithium cobalt oxide (LCO) and mixed metal lithium oxides (NMC) as cathode material.
Researchers from Nanyang Technical University (NTU) in Singapore have shown high-capacity, high-rate, and durable lithium- and sodium-ion battery (LIB and NIB) performance using single-crystalline long-range-ordered bilayered VO 2 nanoarray electrodes. This is important in boosting the high-rate performance in both Li and Na ion storage.
In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical Energy Storage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeablebatteries.
Researchers at the University of Maryland (UMD), the US Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have developed a non-flammable fluorinated electrolyte that supports the most aggressive and high-voltage cathodes in a Li-metal battery. Li metal offers one of the highest specific capacities (3,860 mAh g ?1
Tesla Motor’s Co-founder and Chief Technology Officer JB Straubel signed a 5-year research agreement with Dalhousie University’s Jeff Dahn, Li-ion battery researcher with the Faculty of Science, and his group of students, postdoctoral researchers and technical staff. New Li-ion electrode materials. Theoretical/modeling projects.
RANGE is focused on supporting chemistry and system concepts in energy storage with robust designs in one or both of: Category 1: Low-cost, rechargeable energy storage chemistries and architectures with robust designs; Category 2: Multifunctional energy storage designs. Ceramic and other solid electrolyte batteries.
Electrochemists at TU Graz have used single crystalline acceptor-doped Si—as ubiquitously used in the semiconductor industry—as anode material for rechargeableLi-ion batteries. —Michael Sternad, researcher at the Christian Doppler Laboratory for Lithium Batteries at TU Graz.
E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e.,
Lithium nickel manganese cobalt oxide (NMC) is one of the more promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. O 2 , as shown by soft X-ray absorption spectroscopy experiments. —Lin et al. —Huolin Xin.
The US Department of Energy’s (DOE) Argonne National Laboratory and BASF have signed a world-wide licensing agreement to mass produce and market Argonne’s patented composite cathode materials to manufacturers of advanced lithium-ion batteries. and a rechargeable capacity of up to 250 mAh g -1 over the same window. of Japan in 2008.
Lithium battery is one of the many types of batteries. We all know more or less about lithium batteries in life. But do you understand lithium iron phosphate batteries? Do you know the difference between lithium iron phosphate and lithium batteries? Lithium iron phosphate battery. Lithium Battery.
Yesterday also we get to hear a similar incident from Okinawa where the electric scooter had been parked in a garage and being recharged in the night when a blast had occurred. What kind of battery failures may occur and what will the consequences of such failures be? The safety issues with the li-ion batteries.
OBC: The onboard charger, a piece of power electronics equipment that converts the AC power from the grid to a DC voltage that is used to charge the battery (technically, it would make more sense to call this the charger). EV battery. The OBC is usually a metal box hidden somewhere on the vehicle, which EV owners never see.
The FOA contains a total of 11 areas of interest (AOIs) in the general areas of advanced lightweighting and propulsion materials; advanced battery development; power electronics; advanced heating, ventilation, air conditioning systems; and fuels and lubricants. Computer Aided Engineering for Electric Drive Batteries. Recharge Rate.
Why hes banking on an obscure Chinese electric car company and a CEO who - no joke - drinks his own battery fluid. BYD CEO Wang Chuan-Fu figured out how to make cheaper batteries than the Japanese by replacing machines with migrant workers. By about 2000, BYD had become one of the worlds largest manufacturers of cellphone batteries.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content