This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. —Lee et al.
V in lithium-metal batteries (LMBs). The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.
A new ternary Sn–Ni–P anode material for Li-ion batteries shows high reversible capacity and excellent coulombic efficiency, with an initial discharge capacity and charge capacity of 785.0 After the 100 th discharge–charge cycling, capacity retention is 94.2% mAh g -1 and 567.8 mAh g -1 , respectively. 2010.06.025.
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. —Bi et al.
A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. Electrochemical performance of Li||NMC811 half-cells using different electrolytes.
Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 Mn 0.525 Ni 0.175 Co 0.1 O 2 (Li 1.2 Mn 0.525 Ni 0.175 Co 0.1
Researchers at the Ulsan National Institute of Science and Technology (UNIST) in Korea have developed an innovative electrolyte additive that enables a high-energy-density Li-ion battery to retain more than 80% of its initial capacity even after hundreds of cycles. C and fast charging capability (1.9% O 2 cathodes. O 2 cathodes.
Researchers at Pacific Northwest National Laboratory (PNNL) have used a novel Ni-based metal organic framework (Ni-MOF) significantly to improve the performance of Li-sulfur batteries by immobilizing polysulfides within the cathode structure through physical and chemical interactions at molecular level. Li-S anode work.
Simulated zone projection image based on LMNO crystal model with 20% Ni/Li disorder corresponding to blue rectangle. Simulated zone projection image based on LMNO crystal model with 10% Ni/Li disorder corresponding to white rectangle. For example, a layered composite based on lithium nickel manganese oxide Li 1.2
Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.
Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. More nickel in a battery means it can store more energy.
Rechargeable batteries store electricity in their electrode materials, while redox flow batteries use chemicals stored in tanks attached to the electrodes. Researchers have now developed a battery system based on a hybrid cell, which not only stores and provides electricity but also produces valuable chemicals in a flow system.
Researchers at the Helmholtz Institute Ulm (HIU), founded by the Karlsruhe Institute of Technology (KIT) in cooperation with the University of Ulm, have developed a new lithium-metal battery that offers extremely high energy density of 560 Wh/kg—based on the total weight of the active materials—with remarkably good stability.
Researchers led by Professor Jeff Dahn at Dalhousie University in Canada report that low-voltage NMC cells—particularly those balanced and charged to 3.8V Single crystal Li[Ni 0.5 Single crystal Li[Ni 0.5 V) were cycled with charging to either 3.65 V vs Li + /Li. V vs Li + /Li, or 4.2
Scientists at Tokyo Institute of Technology (Tokyo Tech), Tohoku University, National Institute of Advanced Industrial Science and Technology, and Nippon Institute of Technology, have demonstrated by experiment that a clean electrolyte/electrode interface is key to realizing high-capacity solid-state lithium batteries (SSLBs). O 4 interfaces.
Researchers from the Samsung Advanced Institute of Technology (SAIT) and the Samsung R&D Institute Japan (SRJ) have developed a new high-performance all-solid-state lithium metal battery that uses, for the first time, a silver-carbon (Ag-C) composite layer as the anode with no excess Li. 1 ) and high areal capacity (>6.8?mAh?cm
A team from Tohoku University and Tokyo Tech have addressed one of the major disadvantages of all-solid-state batteries by developing batteries with a low resistance at their electrode/solid electrolyte interface. cm 2 in solid-state Libatteries with Li(Ni 0.5 —Kawasoko.
Researchers in South Korea report the synthesis of high capacity Mn-rich mixed oxide cathode materials for Li-ion batteries. Novel cathode active materials, Li[Li x (Ni 0.3 The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeable batteries.
Cycling characteristics of 700 nm 3D(Si,Ni) at 1C showing a reversible specific capacity of 1,650 mAh/g after 120 cycles of charge/discharge. A 700 nm 3D(Si,Ni) material at 1C showing a reversible specific capacity of 1650 mAh/g after 120 cycles of charge/discharge. Credit: ACS, Gowda et al. Click to enlarge.
Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.
A team of researchers from CNRS, IPB and SAFT in France and UMICORE in Belgium report on the synthesis and performance of a new high-power cathode material for Li-ion batteries (NMCA) in a paper in the Journal of Power Sources. Li 1.11 (Ni 0.40 Biensan (2011) Li(Ni 0.40 Al 0.05 ) 0.89 Al 0.05 ) 0.89
Fast charging is seen as a solution for range and recharging time issues for EVs. However, a critical barrier to fast charging is temperature. Now, a team from Penn State has devised an approach that enables 15-min fast charging of Li-ion batteries in any temperatures (even at ? C charge at 10 °C and C/1.5
Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance.
Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 O 2 (NCM) and Li[Ni 0.8
Windows etched into a foil covering allow soft X-rays to measure charge dynamics in an operating electrode. Researchers at Berkeley Lab and its Advanced Light Source have developed a new soft X-ray spectroscopy technique that can measure the migration of ions and electrons in an integrated, operating battery electrode.
Lithium-ion battery cell for plug-in hybrid vehicles (left) and. Panasonic Corporation will supply prismatic lithium-ion battery cells for Ford Motor Company’s Fusion Hybrid Electric and C-Max Hybrid Electric as well as the Ford Fusion Energi and C-Max Energi plug-in hybrids. hybrid electric vehicles (right). Click to enlarge.
Researchers led by a team at UC Berkeley have demonstrated high-capacity manganese-rich cathodes for advanced lithium-ion batteries. On one end of this compositional spectrum, LiCoO 2 dominates the electronics sector, whereas Ni-rich materials are of interest for the automotive sector. —Lee et al. V, 20 mA g ?
Korea, have developed a Li-metal battery (LMB) (specifically, a Li/NCM battery) designed with EV operating requirements in mind that they say outperforms LMBs reported in the literature to date. The new LMB is capable of fast charging while delivering a high energy density. Jang-Yeon Hwang, Seong-Jin Park, Chong S.
A team at Korea’s Ulsan National Institute of Science and Technology (UNIST), led by Dr. Jaephil Cho, has developed a new high-power NCA (nickel-cobalt-aluminum) Li-ion cathode material: LiNi 0.81 As a result, the team suggests, their new NCA material holds great promise for commercial use in batteries within EV and HEV systems.
The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.
have developed two cobalt-free mixed metal oxide cathode materials for Li-ion batteries containing 20% iron: Li 1+x (Fe 0.2 Mn 0.4 ) 1-x O 2 and Li 1+x (Fe 0.2 offers an initial charge-discharge capacity of 250 mAh g -1 or more, and an average initial discharge voltage of 3.46V. Mn 0.6 ) 1-x O 2. Source: AIST.
Researchers at Argonne National Laboratory have developed a new approach to cobalt-free Li-ion cathodes that avoids some of the problems with other low-cobalt cathode approaches. Mn is abundant, environmentally benign, and less conductive, while Co has limited abundance, is relatively toxic, and becomes metallic on charging.
The options for high-manganese cathodes include LMO (lithium-manganese oxide), LNMO (lithium-nickel-manganese oxide), Li-Mn-rich (also abbreviated as LMR-NMC), and LMP (lithium manganese phosphate) or LMFP (lithium-manganese-iron phosphate). Comparison between NMC 811 and three high-manganese cathodes (LMFP, Li-Mn-rich, LNMO).
Rather than being solely detrimental, cracks in the cathodes of lithium-ion batteries reduce batterycharge time, according to research done at the University of Michigan. This runs counter to the view of many electric vehicle manufacturers, which try to minimize cracking because it decreases battery longevity.
Charge and discharge profile of first and second cycles of Li 2 MnSiO 4 samples measured at 45 °C at 0.02C rate. Researchers from Tohoku University, Japan, have developed novel ultrathin Li 2 MnSiO 4 nanosheets for use as a cathode material in lithium-ion batteries. The Li/Li 2 MSiO 4 cells were cycled between 1.5
and the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) have reached a non-exclusive worldwide licensing agreement to use Argonne’s patented composite cathode material for advanced lithium-ion batteries. Argonne also licensed the cathode technology to LG Chem for use in battery cells. General Motors Co.
Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6
Charge/discharge galvanostatic curves of amorphous TiO 2 NT in Na half cell (red for discharge and black for charge) cycled between 2.5 These electrodes can switch their phase as a battery is cycled, gradually boosting their operational capacity. V vs Li/Li + ) with comparable capacities to the dominant graphite anodes.
Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57 However, O3-Li 0.7
A team at Argonne National Laboratory has used spatially resolved energy dispersive X-ray diffraction to obtain a “movie” of lithiation and delithiation in different sections of a Li-ion battery cell and to quantify lithium gradients that develop in a porous graphite electrode during cycling at a 1C rate (full discharge in 1 hour).
SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. The results, say the researchers, suggest that the cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles. From Sun et al.
Schematic illustration of a Li-O 2 cell employing a mesoporous catalytic polymer membrane. A modified Li-O 2 battery with a catalytic membrane showed a stable cyclability for 60 cycles with a capacity of 1000 mAh/g and a reduced degree of polarization (?0.3 Credit: ACS, RYu et al. Click to enlarge.
Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery. Li/Li + ).
In particular, they proposed that Li 4 CrTiO 6 and Li 4 CrMnO 6 , in which Cr 6+ oxidation is accessible during lithium extraction, are worthy candidates. (Cr The concept of incorporating a Li 2 MnO 3 component into a conventional layered LiM′O 2 structure has received substantial attention to date.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content