article thumbnail

Fluorine-incorporated interface enhances cycling stability of Li metal batteries with Ni-rich NCM cathodes

Green Car Congress

Li metal anodes and Ni-rich layered oxide cathodes with high reversible capacities are promising candidates for the fabrication of high energy density batteries. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. Yongwon Lee et al. 2019.104309.

Ni-Li 357
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization. Huang, M.,

Ni-Li 284
article thumbnail

Nanjing researchers design new Li-rich layered cathode

Green Car Congress

Researchers at Nanjing University (China) have introduced a new layered C2/m oxide—Li 2 Ni 0.2 Compared with Li 2 MnO 3 (LMO), LNMR displays superior capacity, a more stable capacity retention rate, higher energy density and average discharge voltage. In such materials, 1/3 of the TM sites are occupied by Li phase.

Ni-Li 365
article thumbnail

Researchers show clean solid–electrolyte/electrode interfaces double capacity of solid-state Li batteries

Green Car Congress

Solid-state lithium batteries comprise solid electrodes and a solid electrolyte that exchange lithium (Li) ions during charging and discharging. Solid-state lithium (Li) batteries using spinel-oxide electrode materials such as LiNi 0.5 Here, we demonstrate stable battery cycling between the Li 0 Ni 0.5 0c21586.

Ni-Li 243
article thumbnail

PNNL team develops composite sulfur/Ni-MOF composite cathode for Li-S batteries showing excellent capacity retention

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have used a novel Ni-based metal organic framework (Ni-MOF) significantly to improve the performance of Li-sulfur batteries by immobilizing polysulfides within the cathode structure through physical and chemical interactions at molecular level. Li-S anode work.

Ni-Li 186
article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. Electrochemical performance of Li||NMC811 half-cells using different electrolytes. (a)

Li-ion 370
article thumbnail

New Sn-Ni-P Anode Material for Li-ion Batteries Shows High Capacity and Efficiency

Green Car Congress

A new ternary Sn–Ni–P anode material for Li-ion batteries shows high reversible capacity and excellent coulombic efficiency, with an initial discharge capacity and charge capacity of 785.0 After the 100 th discharge–charge cycling, capacity retention is 94.2% mAh g -1 and 567.8 mAh g -1 , respectively.

Ni-Li 210