article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

Researchers show feasibility of lithium-metal-free anode for Li-air battery; addressing one of three main barriers to Li-air battery development

Green Car Congress

Researchers from University of Rome Sapienza (Italy), Hanyang University (Korea) and the Argonne National Laboratory (US) have shown that the highly reactive lithium metal anode typically projected for use in Li-air batteries can be replaced with a lithiated silicon-carbon anode. Cycling current: 200 mA g ?1

Li-ion 306
article thumbnail

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) —Zhu et al.

Cheap 150
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode.

Li-ion 281
article thumbnail

MIT team discovers new family of materials with best performance yet for oxygen evolution reaction; implications for fuel cells and Li-air batteries

Green Car Congress

MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. Earlier post.)

MIT 218
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates. NC State University. Medical University of South Carolina. Columbia University. per gallon. The project also will develop a chemical method to transform butanol into jet fuel.

Carbon 249
article thumbnail

IBM releases fifth annual Next Five in Five list of near-term significant innovations; personalized routing for commuting/transportation makes the cut

Green Car Congress

Also on the list of five is the arrival of advanced batteries, including air batteries (e.g., Lithium air), but targeted initially at small devices. Kyoto University and IBM Research - Tokyo have developed a system that can simulate a broad range of urban transport situations involving millions of vehicles.

Personal 210