Remove Lithium Air Remove Recharge Remove Universal Remove Water
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 Here we introduce a coating layer on lithium metal. V, much higher than the theoretic stable window of water, 1.229 V. mol l -1 Li 2 SO 4 aqueous solution as electrolyte.

Li-ion 281
article thumbnail

MIT team discovers new family of materials with best performance yet for oxygen evolution reaction; implications for fuel cells and Li-air batteries

Green Car Congress

MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. Earlier post.)

MIT 218
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates. NC State University. Medical University of South Carolina. Columbia University. per gallon. The project also will develop a chemical method to transform butanol into jet fuel.

Carbon 249
article thumbnail

IBM releases fifth annual Next Five in Five list of near-term significant innovations; personalized routing for commuting/transportation makes the cut

Green Car Congress

Also on the list of five is the arrival of advanced batteries, including air batteries (e.g., Lithium air), but targeted initially at small devices. Kyoto University and IBM Research - Tokyo have developed a system that can simulate a broad range of urban transport situations involving millions of vehicles.

Personal 210
article thumbnail

Probing the effect of CO2 on Li-air batteries

Green Car Congress

They suggested that the resulting mechanistic understanding of the chemistry of CO 2 in a Li–air cell and the interplay of CO 2 with electrolyte solvation will provide an important guideline for developing Li–air batteries. Lithium-air batteries, with a theoretical gravimetric energy density of ?3500 air battery.

Li-ion 305
article thumbnail

Cambridge researchers take new approach to overcome challenges to Li-O2 batteries; laboratory demonstrator

Green Car Congress

Researchers at the University of Cambridge have developed a working laboratory demonstrator of a lithium-oxygen battery which has very high energy density, is more than 90% efficient, and, to date, can be recharged more than 2000 times, showing how several of the problems holding back the development of these devices could be solved.

Li-ion 150
article thumbnail

DOE awards $54M to 13 projects for transformational manufacturing technologies and materials; top two awards go to carbon fiber materials and electrodes for next-gen batteries

Green Car Congress

The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.