Remove Future Remove Grid Remove Li-ion Remove Sodium
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. —Weller et al. Weller et al.

article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. —Jin et al. 2 in mole or 1.6:8.4

Sodium 334
article thumbnail

French researchers develop sodium-ion battery in 18650 format; performance comparable to Li-ion

Green Car Congress

Researchers within the RS2E network on electrochemical energy storage (Réseau sur le stockage électrochimique de l’énergie) in France have developed the first sodium-ion battery in an 18650 format. The main advantage of the prototype is that it relies on sodium, an element far more abundant and less costly than lithium.

Li-ion 150
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.

Sodium 186
article thumbnail

Lux Research: grid storage battery cost to fall to $500/kWh by 2022, short of expectations

Green Car Congress

Lithium-ion and molten-salt battery costs will approach $500/kWh by 2022, reducing the high capital cost of emerging grid storage technologies. Li-ion batteries are dependent on cost reductions from mass production while molten-salt batteries and VRFBs rely on long discharge durations to reduce costs.

article thumbnail

Faraday Institution to award up to £55M to five consortia for energy storage research

Green Car Congress

The ultimate aim of the research is to facilitate improvements in batteries used for transport and other applications such as grid storage with improved performance and cost characteristics. Next generation lithium ion cathode materials. The five new projects are: Next generation electrode manufacturing–Nextrode.

article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge. Barnhart and Sally M.