Remove Energy Remove Li-ion Remove Ni-Li Remove Recharge
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization. —Jeremiah Johnson.

Ni-Li 284
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. If anode materials of lower redox potentials can be stable in aqueous electrolytes, high energy density systems will be feasible.

Li-ion 281
article thumbnail

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Green Car Congress

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57

Li-ion 150
article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance. Haesun Park, Christopher J. 202101698.

Ni-Li 302
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge.

Li-ion 255
article thumbnail

Researchers in China develop high-voltage-resistant electrolyte for ultrahigh voltage Li metal batteries

Green Car Congress

As reported in an open-access paper in the RSC journal Energy & Environmental Science , Li||LiNi 0.8 Li||NCM811 cells with a thin (50 ? With the increasing demand for rechargeable batteries with a high energy density (? ion batteries (LIBs), although it is challenging. off voltages of 4.7 off voltage (> 4.5

Ni-Li 170
article thumbnail

New class of high-capacity cation-disordered oxides for Li-ion battery cathodes; up to 250 mAh/g

Green Car Congress

Gerbrand Ceder (now at UC Berkeley/Lawrence Berkeley Lab as of 1 July, formerly at MIT) have developed a new class of high capacity cation-disordered oxides—lithium-excess nickel titanium molybdenum oxides (Li-Ni-Ti-Mo, or LNTMO)—for Li-ion cathode materials which deliver capacities up to 250 mAh/g.

Li-ion 150