Remove Li-ion Remove Low Cost Remove Ni-Li Remove Universal
article thumbnail

New cobalt-free high-voltage spinel cathode material with high areal capacity

Green Car Congress

Researchers from the University of California San Diego (UCSD) and the University of Texas at Austin, with colleagues at the US Army Research Laboratory and Lawrence Berkeley National Laboratory, have developed a thick cobalt-free high voltage spinel (LiNi 0.5 —Li et al. (a) —Li et al. Earlier post.).

Ni-Li 307
article thumbnail

New high-voltage electrolyte additive supports high energy density and stability in LMNC Li-ion battery; 2x energy density over LiCoO2

Green Car Congress

A team led by researchers at Chungnam National University (S. Korea) has developed a novel high-voltage electrolyte additive, di-(2,2,2 trifluoroethyl)carbonate (DFDEC), for use with the promising lithium-rich layered composite oxide high-energy cathode material xLi 2 MnO 3 ·(1-x)LiMO 2 (M = Mn, Ni, Co). O 2 (Li 1.2 O 2 (Li 1.2

Li-ion 329
article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

mol l -1 Li 2 SO 4 aqueous solution as electrolyte. Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up.

Li-ion 281
article thumbnail

U Akron team develops Mn-based high performance anode for Li-ion batteries

Green Car Congress

Researchers at the University of Akron have developed hierarchical porous Mn 3 O 4 /C nanospheres as anode materials for Li-ion batteries. mA/g), excellent ratability (425 mAh/g at 4 A/g), and extremely long cycle life (no significant capacity fading after 3000 cycles at 4A/g) as an anode in a Li-ion battery.

Li-ion 199
article thumbnail

6 DOE-funded applied battery research projects targeting Li-ion cells with >200 Wh/kg for PHEVs and EVs

Green Car Congress

A team led by Argonne National Laboratory and including Brookhaven and Lawrence Berkeley National Laboratories and the University of Utah, is developing a new high energy redox couple (250 Wh/kg) based on a high-capacity full gradient concentration cathode (FCG) (230 mAh/g) ( earlier post ) and a Si-Sn composite anode (900 mAh/g).

Li-ion 316
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Cheaper to produce than lithium-ion batteries, they can also store more energy (theoretically five times more than that of lithium-ion batteries), are much safer, and are more environmentally friendly.

Zinc Air 150
article thumbnail

Envia Systems announcement may herald the first wave of DOE-supported commercial high energy density Li-ion cells with Si-C anodes

Green Car Congress

Other silicon anode projects supported by the DOE includes those being done by Amprius, Angstrom Materials and NC State University. Consequently, the market may be poised for the entrance of a first wave of higher-energy density—and lower-cost—automotive Si-C cells in the 2014 or 2015 timeframe. Click to enlarge.

Li-ion 286