This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. Smart grid regional demonstrations involving plug-in vehicles include (ranked by DOE funding): Columbus Southern Power Company (doing business as AEP Ohio).
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energystorage technologies and support promising small businesses. Advanced Management And Protection Of Energy-Storage Devices (AMPED).
The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. storage systems, the team concludes in a paper published in the journal Advanced Materials. The resulting improved electrical capacity and recharging lifetime of the nanowires.
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energystorage systems.
Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energystorage projects. Integrating battery and ultra-capacitors on a common power circuit serving two renewable-energy generation sources. Murray, Jr., million in funding.
The solicitation was designed as a call for early-stage clean energy innovations that fall within five defined technology areas: energy efficiency; energystorage; AI/machine learning; advanced power electronics/power conditioning; and zero- and negative-carbon emission generation. rechargeable battery?technology?that
Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. paves the way for new, promising opportunities to enable high energy batteries for transportation and grid applications. Click to enlarge.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.
A novel rechargeable zinc battery from the research group of Professors Paul Wright and James Evans from the University of California, Berkeley. The research group of Professor Xiangwu Zhang from North Carolina State University presents the concept of high-performance sodium-ion batteries that applies special electrode preparation methods.
Solid electrolytes are considered to be key components for next-generation lithium metal-based rechargeable batteries. The method used in this work has great potential for building reliable alkaline metal-based rechargeable batteries. The interdisciplinary research team published their findings in the current issue of Joule.
Described in a paper published in the RSC journal Energy & Environmental Science , the smart membrane separator could enable the design of a new category of rechargeable/refillable energystorage devices with high energy density and specific power that would overcome the contemporary limitations of electric vehicles.
For the purposes of the report, advanced batteries are defined as rechargeable batteries with a chemistry that has only entered into the market as a mass-produced product in the last two decades for use in the automotive or stationary energystorage system sectors.
MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energystorage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.
As the pressure to decarbonize electricity grids mounts, so does the need to have long-term storage options for power generated from renewables. While rechargeable batteries are the solution of choice for consumer-level use, they are impractical for grid-scale consideration.
Sodium-ion batteries have been of considerable interest due to sodium’s abundance compared to lithium, which is over 500 times less common. This innovative development could revolutionize the way we use and think about energystorage in the future.
In a review paper in the journal Nature Materials , Jean-Marie Tarascon (Professor at College de France and Director of RS2E, French Network on Electrochemical EnergyStorage) and Clare Gray (Professor at the University of Cambridge), call for integrating the sustainability of battery materials into the R&D efforts to improve rechargeable batteries.
Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. The big issue with sodium-ion batteries is that they can store only about two-thirds of the energy of Li-ion batteries of equivalent size.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content