Remove Commercial Remove Energy Remove Energy Storage Remove Lithium Air
article thumbnail

NYSERDA Commits $8M to Develop and Commercialize 19 New York Battery and Energy-Storage Technology Projects

Green Car Congress

The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energy storage projects. The 19 projects, which include two lithium-air efforts, will leverage $7.3 Industry-Led Commercialization Partnerships: $4.8 Murray, Jr.,

article thumbnail

Report: VW Group to decide how to proceed with Quantumscape solid state energy storage by July

Green Car Congress

Bloomberg reports that the Volkswagen Group will decide by July how to proceed with solid state energy storage technology under development by Quantumscape ( earlier post) , citing Prof. The all solid-state system would enable high energy density, high power density, and reversibility of a lithium-air battery, according to the claims.

article thumbnail

Researchers directly visualize formation and disappearance of Li-O2 reaction products; insights to support development of rechargeable lithium-air batteries

Green Car Congress

air (Li-O 2 ) battery represents a conceptually attractive energy storage device for electric vehicle applications due to its high theoretical energy storage capacity ( earlier post ); however, among the obstacles to commercialization is a lack of fundamental understanding of the reactions involved.

article thumbnail

BioSolar begins development of high-energy anode technology

Green Car Congress

BioSolar, a developer of energy storage technology and materials, has begun development of a high energy anode for current- and next-generation lithium batteries. David Vonlanthen, a project scientist and energy storage expert at University of California, Santa Barbara (UCSB).). Earlier post.).

Energy 150
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

OSU team demonstrates concept of potassium-air battery as alternative to lithium-air systems

Green Car Congress

V), which renders the system with a low round-trip energy efficiency around 60%. contrast with LiO 2 and NaO 2 , KO 2 is thermodynamically stable and commercially available. Potassium, an alkali metal similar to lithium (and sodium) can be used in a rechargeable battery. oxygen battery research is facing a lot of challenges.

article thumbnail

The Net-Zero Neighborhood: Advanced Energy Storage and Highly Efficient Photovoltaics Take Transportation Off the Gasoline Grid and Residential Off the Electric Grid

Green Car Congress

The NZN concept relies on high energy density storage systems incorporated into the local grid, as well as efficient photovoltaic generation. Actually delivering commercially viable 500-mile batteries will require exascale computing—i.e., The core of his NZN approach is turning energy into a consumer product.