article thumbnail

PNNL team develops composite sulfur/Ni-MOF composite cathode for Li-S batteries showing excellent capacity retention

Green Car Congress

Researchers at Pacific Northwest National Laboratory (PNNL) have used a novel Ni-based metal organic framework (Ni-MOF) significantly to improve the performance of Li-sulfur batteries by immobilizing polysulfides within the cathode structure through physical and chemical interactions at molecular level. Li-S anode work.

Ni-Li 186
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

RECLAIM: Electrochemical Lithium and Nickel Extraction with Concurrent Carbon Dioxide Mineralization ($2,999,997). Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals. Olivine is a CO 2 -reactive waste product that can be returned as tailings after capture carbon from the air. Harvard University.

Supplies 345
article thumbnail

Stanford researchers develop new electrolysis system to split seawater into hydrogen and oxygen

Green Car Congress

Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. Kenney, Yongtao Meng, Wei-Hsuan Hung, Yijin Liu, Jianan Erick Huang, Rohit Prasanna, Pengsong Li, Yaping Li, Lei Wang, Meng-Chang Lin, Michael D. Image credit: Courtesy of H. Dai, Yun Kuang, Michael Kenney). —Kuang et al.

Hydrogen 249
article thumbnail

Argonne researchers use X-rays to understand the flaws of speedy charging

Green Car Congress

A team at Argonne National Laboratory has used spatially resolved energy dispersive X-ray diffraction to obtain a “movie” of lithiation and delithiation in different sections of a Li-ion battery cell and to quantify lithium gradients that develop in a porous graphite electrode during cycling at a 1C rate (full discharge in 1 hour).

Li-ion 186
article thumbnail

GWU team demonstrates relatively efficient electrochemical process for low-GHG production of ammonia

Green Car Congress

A team at George Washington University led by Stuart Licht has developed a relatively efficient electrochemical process for the production of ammonia from water and nitrogen, without the need for an independent hydrogenation step (and thus the associated carbon-intensive steam reforming of methane as the hydrogen source). —Licht et al.

Ni-Li 218
article thumbnail

Researchers call for integration of materials sustainability into battery research; the need for in situ monitoring

Green Car Congress

Substantial progress in battery technology is essential if we are to succeed in an energy transition towards a more carbon-neutral society. We need new storage technologies if more renewables are to be used on the electrical grid; similarly, the electrification of transport requires much cheaper and longer-lasting batteries.

Li-ion 150
article thumbnail

GWU team demonstrates one-pot process for optimized synthesis of controlled CNTs from CO2; coupling cement and C2CNT

Green Car Congress

Stuart Licht ( earlier post ) have developed a new process that transforms CO 2 into a controlled selection of nanotubes (CNTs) via molten electrolysis; they call the process C2CNT (CO2 into carbon nanotubes). Molten carbonate electrosynthesized boron-doped CNTs exhibit high electrical conductivity. —Ren et al. Licht (2017).

CO2 150