Remove Batteries Remove Electrical Remove Li-ion Remove Universal
article thumbnail

New self-purifying electrolyte for high-energy Li-ion batteries

Green Car Congress

A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. —Lu et al.

Li-ion 370
article thumbnail

Researchers use carbon-based anodes with “bumpy” surfaces for Li-ion batteries that last longer in extreme cold

Green Car Congress

The resulting 12-sided carbon nanospheres had “bumpy” surfaces that demonstrated excellent electrical charge transfer capabilities. The material exhibits a high reversible capacity of 624 mAh g –1 with an 85.9% capacity retention at 0.1 A g –1 as the temperature drops to ?20 Even if the temperature drops to ?35 —Lu et al.

Li-ion 418
article thumbnail

Argonne researchers identify another reason why fast-charging degrades the performance of Li-ion batteries

Green Car Congress

A new study by researchers from Argonne National Laboratory and the University of Illinois Urbana-Champaign seeking to identify the reasons that cause the performance of fast-charged lithium-ion batteries to degrade in EVs has found interesting chemical behavior of the anode as the battery is charged and discharged.

Li-ion 321
article thumbnail

WPI-led team develops dry-print process to make better, cheaper electrodes for Li-ion batteries

Green Car Congress

A team led by Worcester Polytechnic Institute (WPI) researcher Yan Wang has developed a solvent-free process to manufacture lithium-ion battery electrodes that are greener, cheaper, and charge faster than electrodes currently on the market. —Liu et al. Wang, the WPI William B. The solvents are recovered through distillation.

Li-ion 243
article thumbnail

KERI researchers develop high-capacity Li-metal battery with improved rate performance and stability

Green Car Congress

A research team at Korea Electrotechnology Research Institute (KERI) has developed a high-capacity Li-metal battery with improved rate performance and stability using a one-dimensional Li-confinable porous hollow carbon host. However, these hosts suffer from unwanted Li growth on their surface (i.e., Kang et al.

Li-ion 415
article thumbnail

Sandia testing method yields pathway to better, longer-lasting solid-state batteries

Green Car Congress

Using a microscopic method for measuring electrical potential, a team of scientists at Sandia National Laboratories may have discovered how to identify rate-limiting processes in solid-state batteries. Solid-state batteries employ solid electrolytes instead of electrochemical gels and liquids and generally power small electronics.

Li-ion 481
article thumbnail

Researchers in China, US develop binder-free high-silicon-content flexible anode for Li-ion batteries

Green Car Congress

A team from Zhejiang A&F University, Huazhong University of Science and Technology (HUST), and Stanford University have developed a binder-free, flexible, and free-standing electrode comprising an unprecedented 92% silicon content for Li-ion batteries. 1 (Li 15 Si 4 ). —Wang et al.

Li-ion 243