Remove Batteries Remove Charging Remove Ni-Li Remove Store
article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. —Bi et al.

Li-ion 418
article thumbnail

U Texas team develops cobalt-free high-energy lithium-ion battery

Green Car Congress

Researchers from the Cockrell School of Engineering at The University of Texas at Austin have developed a cobalt-free high-energy lithium-ion battery, eliminating the cobalt and opening the door to reducing the costs of producing batteries while boosting performance in some ways. More nickel in a battery means it can store more energy.

article thumbnail

Researchers show that layered calcium transition metal oxides can be promising cathode materials for Ca-ion batteries

Green Car Congress

Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance.

Ni-Li 302
article thumbnail

HIU researchers develop extremely high energy density lithium-metal cell with good stability

Green Car Congress

Researchers at the Helmholtz Institute Ulm (HIU), founded by the Karlsruhe Institute of Technology (KIT) in cooperation with the University of Ulm, have developed a new lithium-metal battery that offers extremely high energy density of 560 Wh/kg—based on the total weight of the active materials—with remarkably good stability.

Ni-Li 476
article thumbnail

Argonne researchers use X-rays to understand the flaws of speedy charging

Green Car Congress

A team at Argonne National Laboratory has used spatially resolved energy dispersive X-ray diffraction to obtain a “movie” of lithiation and delithiation in different sections of a Li-ion battery cell and to quantify lithium gradients that develop in a porous graphite electrode during cycling at a 1C rate (full discharge in 1 hour).

Li-ion 186
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The University of Texas at Arlington will develop acoustic stimulation and electrolytic proton production to produce lithium (Li) and nickel (Ni) from CO 2 -reactive minerals and rocks that contain calcium (Ca) and magnesium (Mg), while sequestering CO 2 in the form of carbonate solids. Travertine Technologies.

Supplies 345
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Zinc-air batteries are powered by zinc metal and oxygen from the air. Zinc-air batteries are powered by zinc metal and oxygen from the air. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33

Zinc Air 150