article thumbnail

New aqueous rechargeable lithium battery shows good safety, high reliability, high energy density and low cost; another post Li-ion alternative

Green Car Congress

Schematic illustration of the aqueous rechargeable lithium battery (ARLB) using the coated lithium metal as anode, LiMn 2 O 4 as cathode and 0.5 mol l -1 Li 2 SO 4 aqueous solution as electrolyte. mol l -1 Li 2 SO 4 aqueous solution as electrolyte, an ARLB is built up. Wang et al. Click to enlarge. —Wang et al.

Li-ion 281
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33 Up until now, rechargeable zinc-air batteries have been made with expensive precious metal catalysts, such as platinum and iridium oxide.

Zinc Air 150
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Schematic illustration of the aqueous Li-I 2 battery.

Li-ion 255
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. In this material (Li[Ni 0.64 Comparison of cycling performance of half cell based on bulk Li[Ni 0.64 and concentration-gradient material Li[Ni 0.64 From Sun et al. Click to enlarge.

Ni-Li 170
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

Although lithium-ion batteries are currently the predominant battery technology in electric and hybrid vehicles, as well as other energy storage applications, sodium-ion could offer significant cost, safety and sustainability benefits. Na 4 M 3 (PO 4 ) 2 P 2 O 7 , M = Fe, Co, Ni, Mn etc.; Sodium-ion intercalation batteries—i.e.,

Sodium 150
article thumbnail

ARPA-E RANGE: $20M for robust transformational energy storage systems for EVs; 3x the range at 1/3 the cost

Green Car Congress

If successful, these vehicles will provide near cost and range parity to gasoline-powered ICE vehicles, ARPA-E said. Areas of particular interests are high conductivity inorganic electrolytes for lithium and other alkaline metal ion systems; and solid state and hybrid battery designs and low cost manufacturing processes.

article thumbnail

Hanyang/BMW team develops high-energy density Li-ion battery with carbon-nanotube-Si composite anode and NCM concentration gradient cathode

Green Car Congress

Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. g cm -3 ; a two-sloped full concentration gradient (TSFCG) Li[Ni 0.85 O 2 , Li[Ni 0.85 O 2 (NCM) and Li[Ni 0.8

Li-ion 210