Remove Grid Remove Sodium Remove Study Remove Wind
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity.

article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. The rise of renewable solar and wind power is demanding sustainable storage technologies using components that are inexpensive, Earth-abundant and environmental friendly.

Sodium 186
article thumbnail

Xcel Terms First Phase of Sodium-Sulfur Battery Wind Energy Storage Test Project Successful

Green Car Congress

Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed.

article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

A plot of ESOI for 7 potential grid-scale energy storage technologies. A new study by Charles J. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013.

article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The high energy storage has stimulated a worldwide study of Li-air batteries. V and charges at 4.2-4.4

Sodium 218
article thumbnail

Molten-Salt Battery Freezes Energy Over a Whole Season

Cars That Think

As the pressure to decarbonize electricity grids mounts, so does the need to have long-term storage options for power generated from renewables. Especially for sources like wind and solar, which have discontinuous availability. He expects the battery to retain over 80% of its charge in that period.

article thumbnail

Energy storage: the key to a decarbonised future

Setec Powerr

We are transitioning from fossil fuels to renewable energy sources such as wind and solar, and the use of energy storage is becoming more widespread. And with the popularity of electric vehicles, the grid is under more and more pressure, so the demand for energy storage is growing. So what exactly is energy storage? Mechanical storage.