Remove Future Remove Li-ion Remove Sodium Remove Universal
article thumbnail

KAUST team devises electrically-driven membrane process for seawater lithium mining

Green Car Congress

Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., ppm) with a nominal Li/Mg selectivity >45 million. —Li et al. to 9013.43

Li-ion 476
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Faraday Institution to award up to £55M to five consortia for energy storage research

Green Car Congress

This expanded portfolio has the dual aims of improving current generation lithium ion batteries as well as longer horizon materials discovery and optimisation projects to support the commercialisation of next-generation batteries. The project’s Principal Investigator is Professor Patrick Grant of the University of Oxford.

article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

Wuhan team develops new electrochemical cell for efficient, pollution-free extraction of lithium from salt lake brines

Green Car Congress

Researchers at Wuhan University in China have developed a new electrochemical cell, PANI/Li x Mn 2 O 4 , for selective recovery of Li + ions from brine water with high impurity cations (K + , Na + , Mg 2+ , etc). free technology for Li + extraction from brine waters.

Li-ion 220
article thumbnail

Purdue researchers convert packing peanuts into anode materials for Li-ion batteries; outperforming graphite

Green Car Congress

Purdue researchers have developed a process to manufacture carbon-nanoparticle and microsheet anodes for Li-ion batteries from polystyrene and starch-based packing peanuts, respectively. These carbonaceous electrodes could also be used for rechargeable sodium-ion batteries.

Li-ion 150
article thumbnail

Study suggests lithium and cobalt for batteries may face supply risks by 2050

Green Car Congress

Lithium and cobalt are fundamental components of present lithium-ion batteries. The researchers present these results in the journal Nature Reviews Materials as part of a cost and resource analysis of sodium-ion batteries. … —Vaalma et al. Battery size and element requirements for selected reference devices.

Supplies 281