Remove Fuel Remove Li-ion Remove Sodium Remove Water
article thumbnail

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

Green Car Congress

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. times above that of sodium-ion batteries with graphite electrodes.

Li-ion 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. A typical Li-air battery discharges at 2.5-2.7

Sodium 218
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

Schematic illustration of the designed hybrid-seawater fuel cell and a schematic diagram at the charged–discharged state. As described in an open access paper in the journal NPG Asia Materials , the system is an intermediate between a battery and a fuel cell, and is accordingly referred to as a hybrid fuel cell. earlier post ).

Recharge 285
article thumbnail

New mesoporous crystalline Si exhibits increased rate of H2 production; potential use in Li-ion batteries also

Green Car Congress

The nanosized crystalline primary particles and high surface areas enable an increased rate of photocatalytic hydrogen production from water and extended working life. These advantages also make the mesoporous silicon a potential candidate for other applications, such as optoelectronics, drug delivery systems and even lithium-ion batteries.

Li-ion 218
article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Schematic representation and operating principles of the lithium–water electrochemical cell used for hydrogen generation: (1) external circuit and (2) inside of lithium–water electrochemical cell. The researchers, headed by Haoshen Zhou, foresee the use of this process in fuel cells for mobile applications. Source: Wang et al.

Water 186
article thumbnail

MIT-led team devises new approach to designing solid ion conductors; implications for high-energy solid-state batteries

Green Car Congress

Researchers led by a team from MIT, with colleagues from Oak Ridge National Laboratory (ORNL), BMW Group, and Tokyo Institute of Technology have developed a fundamentally new approach to alter ion mobility and stability against oxidation of lithium ion conductors—a key component of rechargeable batteries—using lattice dynamics.

MIT 170
article thumbnail

Debunking the Lithium "Mining" FUD

Plug In India

Using low-carbon fuels or biofuels as the source of heat energy to process lithium and manufacture li-ion batteries would cut carbon emissions by half as per world banks study. [4] A completely new method is to filter lithium directly out of the brine using membranes, thus avoiding water-intensive evaporation [8].

Chile 59