Remove Carbon Remove CO2 Remove Commercial Remove Sodium
article thumbnail

UP Catalyst CO2-derived carbon nanotube electrode material boosts cycle life in Na-ion batteries

Green Car Congress

Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7

Carbon 366
article thumbnail

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

Green Car Congress

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. —Stuart Licht. —Licht et al.

Li-ion 150
article thumbnail

PARC building cleantech portfolio; co-extrusion printing of novel battery electrodes and carbon-neutral renewable liquid fuels from atmospheric CO2

Green Car Congress

While the solar cell application has a near-term sales opportunity, commercial application of the technology to battery electrodes is probably 2-3 years out, Elrod noted. Carbon-neutral liquid fuel. As long as the energy for the process is renewably generated, PARC notes, the overall process is carbon-neutral. Electrodes.

Renewable 236
article thumbnail

UK Technology Strategy Board Awards More Than 12M to 22 Projects to Speed Up Development of Low-Carbon Technology for Vehicles; Includes Gas Turbine Range Extender and Li-S Battery Cells

Green Car Congress

This investment is part of our ongoing strategy to put the UK at the forefront of low carbon vehicle technology. The work will help to accelerate the reduction of carbon emissions and deliver mass-market low carbon road vehicles within 5 to 15 years. Other projects include: TSB Low-Carbon Vehicle Technology Awards.

Carbon 225
article thumbnail

Sandia progressing to demo stage with supercritical CO2 Brayton-cycle turbines; up to 50% increase in efficiency of thermal-to-electric conversion

Green Car Congress

Research focuses on supercritical carbon dioxide (S-CO 2 ) Brayton-cycle turbines, which typically would be used for bulk thermal and nuclear generation of electricity, including next-generation power reactors. The supercritical properties of carbon dioxide at temperatures above 500 °C and pressures above 7.6 2009.03.017.

article thumbnail

NSF to award up to $13M for fundamental work on sustainable production of electricity and transportation fuels

Green Car Congress

Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion with new cathode chemistries are appropriate. Work on commercially available systems such as lead-acid and nickel-metal hydride will not be considered by this program.

article thumbnail

Stanford team develops efficient electrochemical cells for CO2 conversion

Green Car Congress

Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. —senior author Matthew Kanan, an associate professor of chemistry at Stanford University. Ripatti et al.