Remove Battery Remove Organization Remove Sodium Remove Solar
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

NSF to award $13M to projects focused on electrochemical and organic photovoltaic systems

Green Car Congress

The focus of this funding opportunity ( PD-17-7644 ) is on electrochemical energy systems and organic photovoltaics. The interest in electrochemical energy storage is on high-energy density and high-power density batteries suitable for transportation and renewable energy storage applications.

article thumbnail

IBC demonstrates highly selective high-yield direct lithium extraction from Salar de Maricunga brine

Green Car Congress

Exceptionally high selectivity for lithium over other ions present in the brine (including sodium, potassium, magnesium, calcium, and boron), meeting specifications for subsequent direct production of battery-grade lithium hydroxide monohydrate, without the need to first produce lithium carbonate. No pre-extraction steps are required.

Li-ion 243
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Researchers convert atmospheric CO2 to carbon nanofibers and nanotubes for use as anodes in Li-ion and Na-ion batteries

Green Car Congress

Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. Earlier post.) Earlier post.) —Stuart Licht. —Licht et al.

Li-ion 150
article thumbnail

Aqua Metals is building a more sustainable battery recycling ecosystem

Charged EVs

The economic benefits of recycling Li-ion batteries are clear, but at present, only a small percentage of them are recycled. In contrast, lead-acid batteries have a 99% recycling rate in the US. The two main processes for recycling lithium-ion batteries are pyrometallurgy and hydrometallurgy.

article thumbnail

Aqua Metals is building a more sustainable battery recycling ecosystem – Charged EVs

Baua Electric

The economic benefits of recycling Li-ion batteries are clear, but at present, only a small percentage of them are recycled. In contrast, lead-acid batteries have a 99% recycling rate in the US. The two main processes for recycling lithium-ion batteries are pyrometallurgy and hydrometallurgy.