Remove Battery Remove Low Cost Remove MIT Remove Store
article thumbnail

Cornell team develops aluminum-anode batteries with up to 10,000 cycles

Green Car Congress

Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. These materials could also provide a safer and more environmentally friendly alternative to lithium-ion batteries.

Batteries 454
article thumbnail

Liquid Metal Battery Corp secures patent rights from MIT

Green Car Congress

Liquid Metal Battery Corporation (LMBC), a Cambridge, Massachusetts company founded in 2010 to develop new forms of electric storage batteries that work in large, grid-scale applications, has secured the rights to key patent technology from MIT. Patents for all liquid metal battery inventions were licensed from MIT.

MIT 210
article thumbnail

Total Signs Research Agreement with MIT to Develop New Stationary Batteries for Solar Power; Smaller-Scale Version of All-Liquid Metal Battery Work Supported by ARPA-E

Green Car Congress

Total has signed a research agreement with the Massachusetts Institute of Technology (MIT) to develop new stationary batteries that are designed to enable the storage of solar power. This agreement valued at $4 million over five years is part of the MIT Energy Initiative (MITEI), which Total joined as a member in November 2008.

MIT 199
article thumbnail

Rechargeable membrane-less hydrogen bromine flow battery shows high power density

Green Car Congress

MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. For applications that require the storage of large quantities of energy economically and efficiently, flow batteries have received renewed attention. Credit: Braff et al. Click to enlarge.

Recharge 291
article thumbnail

MIT team develops first supercapacitor made entirely from neat MOFs, without conductive additives or binders

Green Car Congress

Researchers at MIT have shown that a MOF (metal-organic framework) with high electrical conductivity—Ni 3 (2,3,6,7,10,11-hexaiminotriphenylene) 2 (Ni 3 (HITP) 2 )—can serve as the sole electrode material in a supercapacitor. We have a new material to work with, and we haven’t optimized it at all. —Mircea Dincă.

MIT 150
article thumbnail

24M and partners awarded $3.5M from ARPA-E to develop ultra-high-energy density batteries with new lithium-metal anodes

Green Car Congress

The funds will be used to develop novel membranes and lithium-metal anodes for the next generation of high-energy-density, low-cost batteries. 24M’s core technology is semi-solid lithium-ion, a new class of lithium-ion batteries that will be initially deployed in stationary storage. Click to enlarge. Click to enlarge.

Li-ion 150
article thumbnail

Researchers propose new aluminum–sulfur battery with molten-salt electrolyte; low-cost, rechargeable, fire-resistant, recyclable

Green Car Congress

An international team of researchers led by Quanguan Pang at Peking University and Donald Sadoway at MIT reports a bidirectional, rapidly charging aluminum–chalcogen battery operating with a molten-salt electrolyte composed of NaCl–KCl–AlCl 3. The battery requires no external heat source to maintain its operating temperature.