Remove Batteries Remove Battery Remove Ni-Li
article thumbnail

Fluorine-incorporated interface enhances cycling stability of Li metal batteries with Ni-rich NCM cathodes

Green Car Congress

The electrolyte evenly formed a protective film on the negative electrode and the positive electrode of the lithium metal battery, increasing the lifespan and output of the entire battery. Li/Li + ). O 2 full cell, with a high Coulombic efficiency of 99.98% after 100 cycles at 25 °C. —Lee et al. —Lee et al.

Ni-Li 357
article thumbnail

Researchers in Korea propose graphene/Ni foam as Li metal storage medium for advanced batteries

Green Car Congress

Researchers in Korea have developed three-dimensional monolithic corrugated graphene on nickel foam electrode as a Li metal storage framework in carbonate electrolytes. Therefore, hybrid engineering to prevent dendritic Li growth and increase the coulombic efficiency in highly reactive electrolytes is essential. —Kang et al.

Ni-Li 375
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

New smelting reduction process to recover Co, Ni, Mn, and Li simultaneously from Li-ion batteries

Green Car Congress

A team from metals research institute SWERIM in Sweden reports on a smelting reduction process to recover cobalt, nickel, manganese and lithium simultaneously from spent Li-ion batteries. The absence of a slag allows a nearly 100% recovery of Co, Ni, and Mn in the formed alloy and a nearly 100% recovery of lithium in the flue dust.

Ni-Li 321
article thumbnail

MIT electrolyte enables ultra-high voltage Ni-rich cathodes in Li-metal batteries

Green Car Congress

V in lithium-metal batteries (LMBs). The electrolyte not only suppresses side reactions, stress-corrosion cracking, transition-metal dissolution and impedance growth on the cathode side, but also enables highly reversible Li metal stripping and plating on the lithium-metal anode (LMA), leading to a compact morphology and low pulverization.

Ni-Li 284
article thumbnail

Researchers at Japans AIST Propose a Rechargeable Ni-Li Battery with Hybrid Electrolyte; Ultrahigh Theoretical Energy Density Plus High Power Potential

Green Car Congress

Key components, cell voltage, and cell capacity of Li-ion battery (a), Ni-MH battery (b), and the proposed Ni-Li battery (c). Credit: ACS, Li et al. The proposed Ni-Li battery offers both a high cell voltage (3.49 Click to enlarge. Earlier post.]. Earlier post.].

Ni-Li 230
article thumbnail

PNNL: single-crystal nickel-rich cathode holds promise for next-generation Li-ion batteries

Green Car Congress

High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. —Bi et al.

Li-ion 418
article thumbnail

New strategy for dendrite-free Li-metal batteries based on atomic channels

Green Car Congress

An international team of researchers has developed a new strategy for dendrite-free lithium-metal batteries based on the use of interlayer and intralayer atomic channels in graphite formed by pre-tunnelling the graphite layers. The obtained atomic channels enable the free and fast diffusion of lithium with enhanced kinetics. atomic channels.

Ni-Li 426