article thumbnail

New class of coordination polymers for high-performance Li-, Na- and K-ion storage

Green Car Congress

Researchers at the Université catholique de Louvain in Belgium have designed and synthesized a new class of electrically conducting anionic coordination polymers for all practically relevant alkali-cation storage. V in lithium-, sodium-, or potassium-based cells. V in lithium-, sodium-, or potassium-based cells. Wang et al.

Li-ion 273
article thumbnail

Researchers show that inherent lithium ions in bioderived borate polymer enhance extreme fast charging capability in graphite anodes

Green Car Congress

Now, a study by a team of researchers, led by Professor Noriyoshi Matsumi from Japan Advanced Institute of Science and Technology (JAIST), showcases a new approach to facilitate fast charging using a binder material which promotes Li + -ion intercalation of active material. —Pradhan et al.

article thumbnail

Testing shows Talga graphene silicon boosts capacity of Li-ion battery anode; Safevolt project

Green Car Congress

Australian advanced materials technology company Talga Resources Ltd announced positive initial test results from the development of its graphene silicon lithium-ion anode in the UK. The Safevolt project is an enabler for industry wanting higher Li-ion battery capacity above the level of standard graphite (exceeding maximum 372 mAh/g).

Li-ion 268
article thumbnail

New multifunctional polymer binder achieves theoretical capacity of LiFePO4 Li-ion batteries without additives

Green Car Congress

Researchers led by a team from Griffith University in Australia have developed a multifunctional polymer binder that not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium-ion diffusion coefficient in a LiFePO 4 (LFP) electrode during the operation of the batteries.

Li-ion 150
article thumbnail

Penn State team uses 3D cross-linked polymer sponge to stabilize Li-metal anodes

Green Car Congress

A team at Penn State has developed a three-dimensional, cross-linked polyethylenimine lithium-ion-affinity sponge as the lithium metal anode host to mitigate the problem of dendritic growth of the metal anode. —Li et al. —Li et al. A paper on their work is published in Nature Energy.

Polymer 230
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

By Kamlesh & Raphae Every major automaker has announced plans to build Lithium-Ion battery gigafactories. Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! So there is a lot of Lithium out there, even if we continue to use Lithium-Ion batteries for the next 20 years, we are good.

Sodium 59
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The high energy storage has stimulated a worldwide study of Li-air batteries. V was developed.

Sodium 218