article thumbnail

IIT, Argonne team designs Li2O-based Li-air battery with solid electrolyte; four-electron reaction for higher energy density

Green Car Congress

Researchers at the Illinois Institute of Technology (IIT) and US Department of Energy’s (DOE) Argonne National Laboratory have developed a lithium-air battery with a solid electrolyte. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air.

Li-ion 418
article thumbnail

The Net-Zero Neighborhood: Advanced Energy Storage and Highly Efficient Photovoltaics Take Transportation Off the Gasoline Grid and Residential Off the Electric Grid

Green Car Congress

Gil Weigand of Oak Ridge National Laboratory outlined his vision of a critical solution to the energy, climate and ensuing national security threats facing the US: the Net-Zero Neighborhood (NZN). batteries); the creation of grid-enabled consumer-side energy generation appliances; and a robust set of standards and protocols.

article thumbnail

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. However, the technology has several holdups, including losing energy as it stores and releases its charge.The reaction mechanisms are, in general, not well understood.

Batteries 150
article thumbnail

MIT team synthesizes all carbon nanofiber electrodes for high-energy rechargeable Li-air batteries

Green Car Congress

Gravimetric Ragone plot comparing energy and power characteristics of CNF electrodes based on the pristine and discharged electrode weight with that of LiCoO 2. Li-air (or Li-O 2 ) batteries are receiving a great deal of attention and funding as a high-density energy storage solution, especially for electric vehicle applications.

MIT 268
article thumbnail

MIT, Toyota team clarifies role of iodide in Li-air batteries

Green Car Congress

Lithium-air (or lithium-oxygen) batteries potentially could offer three times the gravimetric energy of current Li-ion batteries (3500 Wh/kg at the cell level); as such, they are looked to a potential solution for long-range EVs. V), where Li 2 O 2 is formed directly through electrochemical steps. —Tuodziecki et al.

MIT 199
article thumbnail

3 winners of DOE’s “America’s Next Top Energy Innovator” Challenge: hydrogen-assisted lean-burn engines, graphene for Li-air and -sulfur batteries, and titanium process

Green Car Congress

The three winning companies are: Umpqua Energy , a startup company based in Medford, Oregon, is using an Argonne National Laboratory technology to develop a system that allows a gasoline engine to operate in an extreme lean burn mode in order to increase gasoline mileage.

Hydrogen 279
article thumbnail

ARPA-E Selects 37 Projects for $106M in Funding in Second Round; Electrofuels, Better Batteries and Carbon Capture

Green Car Congress

The US Department of Energy is awarding $106 million in funding for 37 research projects selected in the second round by the DOE’s Advanced Research Projects Agency-Energy (ARPA-E). Better Batteries - Batteries for Electrical Energy Storage in Transportation (BEEST). Earlier post.). Earlier post.) Lead organization.

Carbon 249