This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries.
Scientists at Stanford University have developed electrochemical cells that convert carbon monoxide (CO) derived from CO 2 into commercially viable compounds more effectively and efficiently than existing technologies. —senior author Matthew Kanan, an associate professor of chemistry at Stanford University.
While the solar cell application has a near-term sales opportunity, commercial application of the technology to battery electrodes is probably 2-3 years out, Elrod noted. The technique uses a solvent such as sodium or potassium hydroxides, converted by reacting with CO 2 to aqueous carbonates or bicarbonates.
As a result, there has been research interest in producing a commercially viable S-CO 2 Brayton-cycle turbine for power generation, especially nuclear; however, much of the work has been largely analytical. Future plans call for commercialization of the technology and development of an industrial demonstration plant at 10 MW of electricity.
Researchers from George Washington University and Vanderbilt University have demonstrated the conversion of atmospheric CO 2 into carbon nanofibers (CNFs) and carbon nanotubes (CNTs) for use as high-performance anodes in both lithium-ion and sodium-ion batteries. times above that of sodium-ion batteries with graphite electrodes.
Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion with new cathode chemistries are appropriate. Work on commercially available systems such as lead-acid and nickel-metal hydride will not be considered by this program.
High energy sodium-nickel battery cell for EV application (Acronym: NINACELL). FLYBUS - Flywheel Based Mechanical Hybrid System for Bus & Commercial Vehicle Applications including Retrofit Programme. Low CO2 High Efficiency Diesel Fuel Injector Nozzle (LOCOFIN). High Efficiency Transmission (HET) for Electric Vehicles.
The US Department of Energy (DOE) announced more than $24 million in funding for 77 projects supported by the Office of Technology Transitions (OTT) Technology Commercialization Fund (TCF). Commercializing 3D Printable Feedstocks for the Advanced Manufacturing of Energy Products, $300,000 MilliporeSigma, St. Louis , Mo. Tempe, Ariz.
The electric car features three different battery options, two different Lithium-based (LI) systems – A123Systems and Enerdel as well as a Sodium-Nickel battery Zebra (Mes-Dea). Massive government subsidies are upending commercial considerations. There is significant cause vs. effect debate on CO2. We have oil!
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content