Remove Charging Remove Recharge Remove Sodium Remove Transportation
article thumbnail

U Waterloo team identifies key reaction in sodium-air batteries; implications for improving Li-air

Green Car Congress

Chemists at the University of Waterloo have identified the key reaction that takes place in sodium-air batteries. Understanding how sodium-oxygen batteries work has implications for developing the more powerful lithium-oxygen battery, which has been proposed by some as the “holy grail” of electrochemical energy storage.

Sodium 150
article thumbnail

EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think!

Plug In India

Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. The big issue with sodium-ion batteries is that they can store only about two-thirds of the energy of Li-ion batteries of equivalent size.

Sodium 59
article thumbnail

PATHION develops new LiRAP-based solid-state electrolytes for Li-sulfur and sodium-ion batteries

Green Car Congress

PATHION is working on a derivative for Li-sulfur batteries as well as a derivative that could be applied in a sodium-ion battery. In combination, this cathode and electrolyte have resulted in a significant improvement in charge efficiency with a longer cycle life. Lithium sulfur.

Li-ion 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. This allows for use of high potential windows, unlike for Li/S, where charging beyond. Click to enlarge. V) without failure. electrodes (Se?

Recharge 220
article thumbnail

OSU smart membrane could enable new category of high-energy, high-power energy storage for EVs

Green Car Congress

A team at the Ohio State University has developed a membrane that regulates bi-directional ion transport across it as a function of its redox state and that could be used as a programmable smart membrane separator in future supercapacitors and redox flow batteries. plugin EVs to Tesla’s 85 kWh battery pack). —Herya and Sundaresan.

article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

With regard to overall storage capability and potential for further fuel efficiency improvements, the demand for larger battery systems based on lithium, nickel and sodium will continue to grow through the increased market penetration of vehicles with higher levels of hybridization and electrification.

Lead Acid 304
article thumbnail

Swiss researchers devise simple procedure to enhance performance of conventional Li-ion batteries without changing chemistries

Green Car Congress

Materials researchers at the Swiss Paul Scherrer Institute PSI in Villigen and the ETH Zurich have developed a very simple and cost-effective procedure for significantly enhancing the performance of conventional Li-ion rechargeable batteries by improving only the design of the electrodes without changing the underlying materials chemistry.

Li-ion 170