Remove Battery Remove International Remove Ni-Li Remove Universal
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals.

Supplies 345
article thumbnail

Argonne team develops new approach to cobalt-free Li-ion cathodes

Green Car Congress

Researchers at Argonne National Laboratory have developed a new approach to cobalt-free Li-ion cathodes that avoids some of the problems with other low-cobalt cathode approaches. Ni is in between Co and Mn in all these criteria. Ni, Mn, Co; NMC) oxides with low Mn and Co contents, e.g., NMC-811.

Li-ion 255
article thumbnail

New Mn-rich high-capacity mixed oxide cathode material for Li-ion batteries

Green Car Congress

Researchers in South Korea report the synthesis of high capacity Mn-rich mixed oxide cathode materials for Li-ion batteries. Novel cathode active materials, Li[Li x (Ni 0.3 The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeable batteries.

Li-ion 236
article thumbnail

Binder-free 3D silicon-nickel electrodes for Li-ion batteries show high capacity and cycling stability

Green Car Congress

Cycling characteristics of 700 nm 3D(Si,Ni) at 1C showing a reversible specific capacity of 1,650 mAh/g after 120 cycles of charge/discharge. A 700 nm 3D(Si,Ni) material at 1C showing a reversible specific capacity of 1650 mAh/g after 120 cycles of charge/discharge. Ni film; selectively etched copper from the microstructure of Cu?Ni

Li-ion 231
article thumbnail

Researchers discover how nickel may inhibit charge/discharge rate in Li-ion batteries

Green Car Congress

Simulated zone projection image based on LMNO crystal model with 20% Ni/Li disorder corresponding to blue rectangle. Simulated zone projection image based on LMNO crystal model with 10% Ni/Li disorder corresponding to white rectangle. For example, a layered composite based on lithium nickel manganese oxide Li 1.2

Li-ion 274
article thumbnail

Argonne and Hanyang University Develop New High-Energy Cathode Material With Improved Thermal Stability; Good Fit for PHEV Applications

Green Car Congress

SEM of Li[Ni 0.64 Mn 0.18 ]O 2 particle with concentration gradient of Ni, Co, and Mn contents. The results, say the researchers, suggest that the cathode material could enable production of batteries that meet the demanding performance and safety requirements of plug-in hybrid electric vehicles. From Sun et al.

Ni-Li 170
article thumbnail

Hybrid biomass flow battery stores electricity and produces valuable chemicals at the same time

Green Car Congress

Rechargeable batteries store electricity in their electrode materials, while redox flow batteries use chemicals stored in tanks attached to the electrodes. Researchers have now developed a battery system based on a hybrid cell, which not only stores and provides electricity but also produces valuable chemicals in a flow system.

Store 368