Remove Available Remove Low Cost Remove Recharge Remove Sodium
article thumbnail

Researchers use graphite positive electrodes in high-capacity rechargeable lithium/chlorine batteries

Green Car Congress

This work could open up widely available, low-cost graphitic materials for high-capacity alkali metal/Cl 2 batteries. The study is published in the Journal of the American Chemical Society. In an earlier study, the researchers reported ∼3.5 2c07826.

Recharge 243
article thumbnail

Cal Energy Commission awards $3.75M to early-stage clean energy projects; 9 battery projects

Green Car Congress

Each awardee receives up to $150,000 in initial funding with up to $450,000 available in follow-on funding. The battery-related projects are: Coreshell Technologies : Thin-film battery electrode coating technology for lower costs and doubled battery life. EnZinc : Safe, high performance rechargeable zinc battery.

Clean 249
article thumbnail

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery. Earlier post.)

Sodium 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Goodenough and UT team report new strategy for all-solid-state Na or Li battery suitable for EVs; plating cathodes

Green Car Congress

lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Traditional rechargeable batteries use a liquid electrolyte and an oxide as a cathode host into which the working cation of the electrolyte is inserted reversibly over a finite solid-solution range. Resources. Grundish, A.

Li-ion 150
article thumbnail

Industry study finds lead-acid to remain most wide-spread automotive energy storage for foreseeable future; new chemistries continue to grow

Green Car Congress

Their low cost and ability to start the engine at cold temperatures sets them apart in conventional and basic micro-hybrid vehicles, and as auxiliary batteries in all other automotive applications, according to the report. In these applications, they are currently the only technology available for the mass-market.

Lead Acid 304
article thumbnail

What’s Happening in EV Battery Technology

Driivz

All are counting on battery innovations to improve EV performance, drive down costs, and eliminate dependence on scarce materials. The ideal battery will be made of low-cost, plentiful materials that are lightweight and flexible enough to allow vehicle design innovations.