Remove Available Remove Li-ion Remove Sodium Remove Wind
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity.

article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The high energy storage has stimulated a worldwide study of Li-air batteries. V was developed.

Sodium 218
article thumbnail

Stanford study quantifies energetic costs of grid-scale energy storage over time; current batteries the worst performers; the need to improve cycle life by 3-10x

Green Car Congress

As the percentage of electricity supply from wind and solar increases, grid operators will need to employ strategies and technologies, including energy storage, to balance supply with demand given the intermittency of the renewable supply. Lithium-ion batteries were the best performers, with an ESOI value of 10. PHS followed at 210.

article thumbnail

Can Flow Batteries Finally Beat Lithium?

Cars That Think

The cell of a flow battery uses two chemical solutions containing ions, one acting as the anolyte (adjacent to the anode), the other as the catholyte (near the cathode). Typical redox flow batteries use ions based on iron chromium or vanadium chemistries; the latter takes advantage of vanadium’s four distinct ionic states.

article thumbnail

MIT and Moscow State collaborating on advanced batteries, metal-air batteries and reversible fuel/electrolysis cells

Green Car Congress

CEES has three main research thrusts: the development of advanced lithium-ion and multivalent ion batteries; the development of rechargeable metal-air batteries; and Development of reversible low and elevated temperature fuel cells. Advanced Li-ion and multivalent ion batteries. Rechargeable metal-air batteries.

MIT 150
article thumbnail

How Umicore is ensuring sustainability in the North American EV battery chain

Charged EVs

This is the case at our gigafactory in Europe, which relies on wind energy, and it’s also what we plan for our soon-to-come plant in Canada. The market for EVs and Li-ion batteries is growing rapidly, and currently the demand for new materials far outpaces the volume of end-of-life Li-ion batteries.

article thumbnail

ARPA-E awards $43M to 19 energy storage projects to advance electric vehicle and grid technologies

Green Car Congress

Temperature Regulation for Lithium-Ion Cells. environment of a lithium-ion battery in real-time. Strain Estimation Technology for Lithium-Ion Batteries. tracking physical expansion and contraction of lithium-ion. sources like solar and wind for small commercial and. Advanced Sodium Battery. Laboratory.