Remove Low Cost Remove Recharge Remove Sodium Remove Wind
article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

John Goodenough, known around the world for his pioneering work that led to the invention of the rechargeable lithium-ion battery, have devised a new strategy for a safe, low-cost, all-solid-state rechargeable sodium or lithium battery cell that has the required energy density and cycle life for a battery that powers an all-electric road vehicle.

Low Cost 150
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). Large-scale energy storage systems are needed to deal with intermittent electricity production of solar and wind. Recently, attention has been refocused on room-temperature Na-ion batteries (NIBs) as a low-cost alternative technology as compared to LIBs. Click to enlarge.

Sodium 292
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.

Sodium 218
article thumbnail

Molten-Salt Battery Freezes Energy Over a Whole Season

Cars That Think

Especially for sources like wind and solar, which have discontinuous availability. While rechargeable batteries are the solution of choice for consumer-level use, they are impractical for grid-scale consideration. However, in the PNNL team’s demonstration, the freeze–thaw mechanism of the molten salt is able to circumvent that problem.

article thumbnail

DOE Awarding $620M for Smart Grid Demonstration and Energy Storage Projects

Green Car Congress

Improved energy storage technologies will allow for expanded integration of renewable energy resources like wind and photovoltaic systems and will improve frequency regulation and peak energy management. Tehachapi Wind Energy Storage Project. Notrees Wind Storage. Wind Firming EnergyFarm. 29,561,142. 125,006,103.

article thumbnail

PNNL team develops sodium-manganese oxide electrodes for sodium-ion rechargeable batteries

Green Car Congress

The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. Earlier post.)

Sodium 218