article thumbnail

DOE awards $60M to 24 R&D projects to accelerate advancements in zero-emissions vehicles

Green Car Congress

Transportation accounts for approximately 30% of total US energy needs and generates the largest share of the country’s greenhouse gas emissions. Clemson University will develop a lightweight, multi-material passenger vehicle body structure, addressing challenges in joining dissimilar materials. SUNY University @ Stony Brook.

Li-ion 186
article thumbnail

Argonne National Labs Ramping Up Lithium-Air Research and Development; Li-ion as EV Bridge Technology

Green Car Congress

Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.

Li-ion 281
article thumbnail

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. One reaction that hasn’t been fully explained is how oxygen blows bubbles inside a lithium-air battery when it discharges. Oxygen gas is released and inflates the bubble.

Battery 150
article thumbnail

New nanolithia cathodes may address technical drawbacks of Li-air batteries; scalable, cheap and safer Li-air battery system

Green Car Congress

An international team from MIT, Argonne National Laboratory and Peking University has demonstrated a lab-scale proof-of-concept of a new type of cathode for Li-air batteries that could overcome the current drawbacks to the technology, including a high potential gap (>1.2 V) V in O 2 (gas) → O x− (condensed phase), and η charging > 1.1

Cheap 150
article thumbnail

Study shows role of operating temperature on performance of Li-air batteries

Green Car Congress

A team including researchers from Hanyang University (South Korea) and University of Rome Sapienza (Italy) have shown that operating temperature plays an important role in the performance of Lithium-air batteries. Batteries Electric (Battery)' Click to enlarge. —Park et al.

Li-ion 186
article thumbnail

DOE awards $54M to 13 projects for transformational manufacturing technologies and materials; top two awards go to carbon fiber materials and electrodes for next-gen batteries

Green Car Congress

The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.

article thumbnail

GWU researchers introduce new class of molten air batteries; significantly greater energy capacity than Li-air

Green Car Congress

Generalized form of the molten air battery. Researchers at George Washington University led by Dr. Stuart Licht have introduced the principles of a new class rechargeable molten air batteries that offer amongst the highest intrinsic electric energy storage capabilities. Licht et al. Click to enlarge. Earlier post.]

Energy 309