Remove Energy Storage Remove Lithium Air Remove Store Remove Universal
article thumbnail

Report: VW Group to decide how to proceed with Quantumscape solid state energy storage by July

Green Car Congress

Bloomberg reports that the Volkswagen Group will decide by July how to proceed with solid state energy storage technology under development by Quantumscape ( earlier post) , citing Prof. The all solid-state system would enable high energy density, high power density, and reversibility of a lithium-air battery, according to the claims.

article thumbnail

NYSERDA Commits $8M to Develop and Commercialize 19 New York Battery and Energy-Storage Technology Projects

Green Car Congress

The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energy storage projects. The 19 projects, which include two lithium-air efforts, will leverage $7.3 This will enable increased renewable-energy contributions to the grid.

article thumbnail

UK Researchers Developing Rechargeable Lithium-Air Battery; Up to 10X the Capacity of Current Li-ion Cells

Green Car Congress

Diagram of the STAIR (St Andrews Air) cell. Oxygen drawn from the air reacts within the porous carbon to release the electrical charge in this lithium-air battery. Lithium-air batteries use a catalytic air cathode in combination with an electrolyte and a lithium anode. Click to enlarge.

article thumbnail

PNNL team uncovers reaction mechanisms of Li-air batteries; how batteries blow bubbles

Green Car Congress

Lithium-air batteries are looked to by many as a very high-energy density next-generation energy storage solution for electric vehicles. However, the technology has several holdups, including losing energy as it stores and releases its charge.The reaction mechanisms are, in general, not well understood.

Batteries 150
article thumbnail

Argonne National Laboratory to Host Beyond Lithium Ion Symposium

Green Car Congress

Argonne National Laboratory, near Chicago, will host on 3-4 May 2010 the symposium “ Beyond Lithium Ion: Computational Perspectives ” to discuss research opportunities in electrochemical energy storage, specifically, lithium-air batteries for transportation.

article thumbnail

U Waterloo team shows four-electron conversion for Li-O2 batteries for high energy density; inorganic molten salt electrolyte, high temperature

Green Car Congress

Chemists from the University of Waterloo have successfully resolved two of the most challenging issues surrounding lithium-oxygen batteries, and in the process created a working battery with near 100% coulombic efficiency. A) Gibbs reaction energy for formation of Li 2 O and Li 2 O 2 as a function of temperature.

article thumbnail

St. Andrews team elucidates behavior of carbon cathodes in Li-air batteries; the importance of the synergy between electrode and electrolyte

Green Car Congress

Carbon is seen as an attractive potential cathode material for aprotic (non-aqueous) Lithium-air batteries, which are themselves of great interest for applications such as in electric vehicles because of the cells’ high theoretical specific energy. A team at the University of St. Andrews (Scotland) led by Prof.

Carbon 240