Remove Carbon Remove Ni-Li Remove Sodium
article thumbnail

Researchers find tin nanoparticles promising electrode material for sodium-ion batteries

Green Car Congress

Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e., for the positive electrode.

Sodium 210
article thumbnail

Amorphous titanium dioxide nanotube anodes for sodium-ion batteries show ability to self-improve specific capacity

Green Car Congress

A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. V vs Li/Li + ) with comparable capacities to the dominant graphite anodes.

Sodium 210
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

RECLAIM: Electrochemical Lithium and Nickel Extraction with Concurrent Carbon Dioxide Mineralization ($2,999,997). Feedstocks will include Li/Ni/Ca/Mg-rich igneous and sedimentary minerals. Olivine is a CO 2 -reactive waste product that can be returned as tailings after capture carbon from the air. Harvard University.

Supplies 345
article thumbnail

Faradion demonstrates proof-of-concept sodium-ion electric bike

Green Car Congress

British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e., Oxford University was also a partner. Earlier post.)

Sodium 150
article thumbnail

ANL team develops new class of Li- and Na- rechargeable batteries based on selenium and selenium-sulfur; greater volumetric energy densities than sulfur-based batteries

Green Car Congress

Cycling performance of Li/SeS 2 ?C, Researchers at Argonne National Laboratory have developed selenium and selenium–sulfur (Se x S y )-based cathode materials for a new class of room-temperature lithium and sodium batteries. Unlike the widely studied Li/S system, both Se and Se x S y can be cycled to high voltages (up to 4.6

Recharge 220
article thumbnail

NETL investigating researching chemistries for large-scale battery- and supercapacitor-based grid energy storage systems

Green Car Congress

This includes research on appropriate anodes, cathodes, and electrolytes for magnesium (Mg)-, sodium (Na)-, and lithium (Li)-based batteries and novel transition metal oxide- and nitride-based supercapacitor electrode materials. Magnesium is much more abundant in the Earth’s crust, making it less expensive than Li by a factor of 24.

article thumbnail

High-capacity GQD-coated VO2 nanoarray electrodes for high-performance Li- and Na-ion batteries

Green Car Congress

Researchers from Nanyang Technical University (NTU) in Singapore have shown high-capacity, high-rate, and durable lithium- and sodium-ion battery (LIB and NIB) performance using single-crystalline long-range-ordered bilayered VO 2 nanoarray electrodes. This is important in boosting the high-rate performance in both Li and Na ion storage.

Li-ion 186