Remove Battery Remove Low Cost Remove MIT Remove Recharge
article thumbnail

Cornell team develops aluminum-anode batteries with up to 10,000 cycles

Green Car Congress

Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. These materials could also provide a safer and more environmentally friendly alternative to lithium-ion batteries.

Batteries 454
article thumbnail

Rechargeable membrane-less hydrogen bromine flow battery shows high power density

Green Car Congress

MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. For applications that require the storage of large quantities of energy economically and efficiently, flow batteries have received renewed attention. Credit: Braff et al. Click to enlarge.

Recharge 291
article thumbnail

MIT research team finds most efficient oxygen evolution reaction catalyst yet; potential for hydrogen production and rechargeable metal-air batteries

Green Car Congress

A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. rechargeable metal-air batteries (MxO 2 ?

MIT 326
article thumbnail

MIT/Tsinghua high-rate aluminum yolk-shell nanoparticle anode for Li-ion battery with long cycle life and high capacity

Green Car Congress

A team of researchers at MIT and Tsinghua University has developed a high-rate, high-capacity and long-lived anode for Li-ion batteries comprising a yolk-shell nanocomposite of aluminum core (30 nm in diameter) and TiO 2 shell (~3 nm in thickness), with a tunable interspace (Al@TiO 2 , or ATO). Earlier post.). Capacity decay is only.

Li-ion 150
article thumbnail

New Lithium rechargeable semi-solid flow cell offers energy densities an order of magnitude greater than previous flow batteries; possible applications in transportation and grid-scale storage

Green Car Congress

Yet-Ming Chiang will give a talk on “Scaling Lithium Ion (or other) Chemistries Using a Flow Battery Architecture” at the upcoming 4 th Symposium on Energy Storage: Beyond Li-ion , to be held at Pacific Northwest National Laboratory, 7-–9 June 2011. V cell voltage and have low ion concentrations (typically 1.2

Li-ion 345
article thumbnail

24M and partners awarded $3.5M from ARPA-E to develop ultra-high-energy density batteries with new lithium-metal anodes

Green Car Congress

The funds will be used to develop novel membranes and lithium-metal anodes for the next generation of high-energy-density, low-cost batteries. 24M’s core technology is semi-solid lithium-ion, a new class of lithium-ion batteries that will be initially deployed in stationary storage. Click to enlarge.

Li-ion 150
article thumbnail

Researchers propose new aluminum–sulfur battery with molten-salt electrolyte; low-cost, rechargeable, fire-resistant, recyclable

Green Car Congress

An international team of researchers led by Quanguan Pang at Peking University and Donald Sadoway at MIT reports a bidirectional, rapidly charging aluminum–chalcogen battery operating with a molten-salt electrolyte composed of NaCl–KCl–AlCl 3. The battery requires no external heat source to maintain its operating temperature.