article thumbnail

Researchers develop MOF membrane coating to prolong lithium–sulfur battery life

Green Car Congress

Although rechargeable lithiumsulfur (Li–S) batteries promise high energy density storage—particularly attractive for electric vehicle applications—the technology is currently limited by the shuttling polysulfides between the battery’s electrodes. of its capacity after 40 hours. —Suriyakumar et al.

article thumbnail

RPI team develops method to use paper-making by-product in lithium-sulfur batteries

Green Car Congress

Researchers at Rensselaer Polytechnic Institute (RPI) have now developed a method to use this cheap and abundant waste byproduct to build a components for lithium-sulfur batteries. The micropores provide sufficient space to capture substantial amounts of sulfur and accommodate the large volume change of sulfur during cycling.

article thumbnail

Drexel team proposes TiO/CNF nanofiber mats to improve Lithium-Sulfur battery performance

Green Car Congress

Researchers in Drexel’s College of Engineering report the ability of stabilized titanium monoxide (TiO) nanoparticles in nanofibers to support high conductivity and to bind polysulfides in Li-S batteries. We have created freestanding porous titanium monoxide nanofiber mat as a cathode host material in lithium-sulfur batteries.

article thumbnail

Waterloo researchers use MgB2 as Li-S battery cathode host to improve performance

Green Car Congress

Lithium-sulfur (Li-S) batteries, despite their high theoretical specific energy, face practical challenges including polysulfide shuttling and low cell-level energy density. Nazar (2018) “Lightweight Metallic MgB 2 Mediates Polysulfide Redox and Promises High-Energy-Density Lithium-Sulfur Batteries,” Joule doi: 10.1016/j.joule.2018.09.024.

article thumbnail

Novel solid-phase transformation enables high-energy Li-S batteries in conventional Li-ion electrolyte

Green Car Congress

Researchers from Western University, Canadian Light Source, and the Chinese Academy of Sciences have proposed a novel solid-phase Li-S transformation mechanism that enables high energy Li-S batteries in conventional Li-ion carbonate electrolytes. Schematic of a lithium sulfur battery in carbonate-based electrolyte.

Li-ion 249
article thumbnail

SJTU team develops fumed alumina gel-like electrolyte to boost performance of Li-S batteries

Green Car Congress

Researchers at Shanghai Jiao Tong University have developed a gel-like electrolyte induced by fumed alumina for dendrite-free Li deposition, lower over-potential and better cycle stability in lithium-sulfur batteries. An open-access paper on their work is published in the RSC journal Chemical Communications. —Lei et al.

article thumbnail

OXIS Energy hits 425 Wh/kg with Li-S cell,expects to achieve 450 Wh/kg by end of year

Green Car Congress

OXIS Energy UK has achieved 425 Wh/kg on a High Energy 16Ah pouch Lithium Sulfur (Li-S) cell design for HAPS applications (High Altitude Pseudo Satellites) and expects to achieve 450Wh/kg at cell level by the end of 2018. The battery module uses a High Power, Ultra-Light Lithium Sulfur pouch cell at 300 Wh/kg.