Remove Molten Salt Remove Power Remove Recharge Remove Sodium
article thumbnail

Molten-Salt Battery Freezes Energy Over a Whole Season

Cars That Think

As the pressure to decarbonize electricity grids mounts, so does the need to have long-term storage options for power generated from renewables. While rechargeable batteries are the solution of choice for consumer-level use, they are impractical for grid-scale consideration.

article thumbnail

Report: Sumitomo and Kyoto University developing lower temperature molten-salt battery; about 10% the cost of Li-ion

Green Car Congress

in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. Molten-salt batteries use highly conductive molten salts as an electrolyte, and can offer high energy and power densities.

article thumbnail

BASF announces winners of the open innovation contest on energy storage

Green Car Congress

The winning concepts were: A molten air battery that uses a molten salt electrolyte at elevated temperature from Professor Stuart Licht at George Washington University. A novel rechargeable zinc battery from the research group of Professors Paul Wright and James Evans from the University of California, Berkeley.

article thumbnail

Hydro-Québec and Technifin form partnership to license lithium titanate spinel oxide (LTO) technologies for Li-ion battery applications

Green Car Congress

Despite the low capacity of LTO (175 mAh/g) relative to that of graphite (372 mAh/g), lithium-ion cells with advanced LTO anodes are particularly attractive for a new, emerging generation of safe lithium-ion batteries to power hybrid electric vehicles and other mobile devices, as well as for stationary energy storage applications.

article thumbnail

Sadoway and MIT team demonstrate calcium-metal-based liquid metal battery

Green Car Congress

MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energy storage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.