Remove Lithium Air Remove Sodium Remove Water
article thumbnail

Researchers Develop Lithium-Water Electrochemical Cell for the Controlled Generation of H2 and Electricity

Green Car Congress

Schematic representation and operating principles of the lithiumwater electrochemical cell used for hydrogen generation: (1) external circuit and (2) inside of lithiumwater electrochemical cell. the high-school chemistry demonstration of the violent reaction between sodium and water.). Source: Wang et al.

Water 186
article thumbnail

NSF to award $13M to projects focused on electrochemical and organic photovoltaic systems

Green Car Congress

Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion electrochemical energy storage are appropriate. Photocatalytic or photoelectrochemical processes for the splitting of water into H 2 gas, or for the reduction of CO 2 to liquid or gaseous fuels are appropriate.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

NSF to award up to $13M for fundamental work on sustainable production of electricity and transportation fuels

Green Car Congress

Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion with new cathode chemistries are appropriate. Advanced Batteries for Transportation. The focus is on high-energy density and high-power density batteries suitable for transportation applications.

article thumbnail

NSF to award $13M for fundamental engineering research on production of electricity and fuels

Green Car Congress

Advanced systems such as lithium-air, sodium-ion, as well as lithium-ion electrochemical energy storage are appropriate. Advanced Batteries for Transportation and Renewable Energy Storage. Work on commercially available systems such as lead-acid and nickel-metal hydride batteries will not be considered by this program.